-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_struct_utils.py
226 lines (192 loc) · 8.47 KB
/
test_struct_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.structures import utils as struct_utils
from .common_testing import TestCaseMixin
class TestStructUtils(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(43)
def _check_list_to_padded_slices(self, x, x_padded, ndim):
N = len(x)
for i in range(N):
slices = [i]
for dim in range(ndim):
if x[i].nelement() == 0 and x[i].ndim == 1:
slice_ = slice(0, 0, 1)
else:
slice_ = slice(0, x[i].shape[dim], 1)
slices.append(slice_)
if x[i].nelement() == 0 and x[i].ndim == 1:
x_correct = x[i].new_zeros(*[[0] * ndim])
else:
x_correct = x[i]
self.assertClose(x_padded[slices], x_correct)
def test_list_to_padded(self):
device = torch.device("cuda:0")
N = 5
K = 20
for ndim in [1, 2, 3, 4]:
x = []
for _ in range(N):
dims = torch.randint(K, size=(ndim,)).tolist()
x.append(torch.rand(dims, device=device))
# set 0th element to an empty 1D tensor
x[0] = torch.tensor([], dtype=x[0].dtype, device=device)
# set 1st element to an empty tensor with correct number of dims
x[1] = x[1].new_zeros(*[[0] * ndim])
pad_size = [K] * ndim
x_padded = struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
for dim in range(ndim):
self.assertEqual(x_padded.shape[dim + 1], K)
self._check_list_to_padded_slices(x, x_padded, ndim)
# check for no pad size (defaults to max dimension)
x_padded = struct_utils.list_to_padded(x, pad_value=0.0, equisized=False)
max_sizes = (
max(
(0 if (y.nelement() == 0 and y.ndim == 1) else y.shape[dim])
for y in x
)
for dim in range(ndim)
)
for dim, max_size in enumerate(max_sizes):
self.assertEqual(x_padded.shape[dim + 1], max_size)
self._check_list_to_padded_slices(x, x_padded, ndim)
# check for equisized
x = [torch.rand((K, *([10] * (ndim - 1))), device=device) for _ in range(N)]
x_padded = struct_utils.list_to_padded(x, equisized=True)
self.assertClose(x_padded, torch.stack(x, 0))
# catch ValueError for invalid dimensions
pad_size = [K] * (ndim + 1)
with self.assertRaisesRegex(ValueError, "Pad size must"):
struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
# invalid input tensor dimensions
x = []
ndim = 3
for _ in range(N):
dims = torch.randint(K, size=(ndim,)).tolist()
x.append(torch.rand(dims, device=device))
pad_size = [K] * 2
with self.assertRaisesRegex(ValueError, "Pad size must"):
x_padded = struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
def test_padded_to_list(self):
device = torch.device("cuda:0")
N = 5
K = 20
ndim = 2
for ndim in (2, 3, 4):
dims = [K] * ndim
x = torch.rand([N] + dims, device=device)
x_list = struct_utils.padded_to_list(x)
for i in range(N):
self.assertClose(x_list[i], x[i])
split_size = torch.randint(1, K, size=(N, ndim)).unbind(0)
x_list = struct_utils.padded_to_list(x, split_size)
for i in range(N):
slices = [i]
for dim in range(ndim):
slices.append(slice(0, split_size[i][dim], 1))
self.assertClose(x_list[i], x[slices])
# split size is a list of ints
split_size = [int(z) for z in torch.randint(1, K, size=(N,)).unbind(0)]
x_list = struct_utils.padded_to_list(x, split_size)
for i in range(N):
self.assertClose(x_list[i], x[i][: split_size[i]])
def test_padded_to_packed(self):
device = torch.device("cuda:0")
N = 5
K = 20
ndim = 2
dims = [K] * ndim
x = torch.rand([N] + dims, device=device)
# Case 1: no split_size or pad_value provided
# Check output is just the flattened input.
x_packed = struct_utils.padded_to_packed(x)
self.assertTrue(x_packed.shape == (x.shape[0] * x.shape[1], x.shape[2]))
self.assertClose(x_packed, x.reshape(-1, K))
# Case 2: pad_value is provided.
# Check each section of the packed tensor matches the
# corresponding unpadded elements of the padded tensor.
# Check that only rows where all the values are padded
# are removed in the conversion to packed.
pad_value = -1
x_list = []
split_size = []
for _ in range(N):
dim = torch.randint(K, size=(1,)).item()
# Add some random values in the input which are the same as the pad_value.
# These should not be filtered out.
x_list.append(
torch.randint(low=pad_value, high=10, size=(dim, K), device=device)
)
split_size.append(dim)
x_padded = struct_utils.list_to_padded(x_list, pad_value=pad_value)
x_packed = struct_utils.padded_to_packed(x_padded, pad_value=pad_value)
curr = 0
for i in range(N):
self.assertClose(x_packed[curr : curr + split_size[i], ...], x_list[i])
self.assertClose(torch.cat(x_list), x_packed)
curr += split_size[i]
# Case 3: split_size is provided.
# Check each section of the packed tensor matches the corresponding
# unpadded elements.
x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size)
curr = 0
for i in range(N):
self.assertClose(x_packed[curr : curr + split_size[i], ...], x_list[i])
self.assertClose(torch.cat(x_list), x_packed)
curr += split_size[i]
# Case 4: split_size of the wrong shape is provided.
# Raise an error.
split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0)
with self.assertRaisesRegex(ValueError, "1-dimensional"):
x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size)
split_size = torch.randint(1, K, size=(2 * N,)).view(N * 2).tolist()
with self.assertRaisesRegex(
ValueError, "same length as inputs first dimension"
):
x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size)
# Case 5: both pad_value and split_size are provided.
# Raise an error.
with self.assertRaisesRegex(ValueError, "Only one of"):
x_packed = struct_utils.padded_to_packed(
x_padded, split_size=split_size, pad_value=-1
)
# Case 6: Input has more than 3 dims.
# Raise an error.
x = torch.rand((N, K, K, K, K), device=device)
split_size = torch.randint(1, K, size=(N,)).tolist()
with self.assertRaisesRegex(ValueError, "Supports only"):
struct_utils.padded_to_packed(x, split_size=split_size)
def test_list_to_packed(self):
device = torch.device("cuda:0")
N = 5
K = 20
x, x_dims = [], []
dim2 = torch.randint(K, size=(1,)).item()
for _ in range(N):
dim1 = torch.randint(K, size=(1,)).item()
x_dims.append(dim1)
x.append(torch.rand([dim1, dim2], device=device))
out = struct_utils.list_to_packed(x)
x_packed = out[0]
num_items = out[1]
item_packed_first_idx = out[2]
item_packed_to_list_idx = out[3]
cur = 0
for i in range(N):
self.assertTrue(num_items[i] == x_dims[i])
self.assertTrue(item_packed_first_idx[i] == cur)
self.assertTrue(item_packed_to_list_idx[cur : cur + x_dims[i]].eq(i).all())
self.assertClose(x_packed[cur : cur + x_dims[i]], x[i])
cur += x_dims[i]