-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnotations.tex
241 lines (239 loc) · 9.53 KB
/
notations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
\renewcommand{\thesection}{\Roman{section}}
\renewcommand{\thesubsection}{\roman{subsection}}
%
\chapter{Notations and Conventions}%
%\addcontentsline{toc}{chapter}{Notations and Conventions}
\section{Logic}%
\subsection{Propositional logic}
Given propositional variables $\mathit{p}$, $\mathit{q}$, the boolean %
operators $\lnot$, $\lor$, $\land$, $\Leftrightarrow$, $\Rightarrow$, %
$\Leftarrow$, assign boolean \textit{truth values} as follows,
\begin{enumerate}
\item[$\lnot$]{%
$\lnot p$ has not the truth value of $p$.
}
\item[$\lor$]{
The \textit{conjonction} $p \lor q$ is true, unless: %
$p$ false, $q$ false.
}
\item[$\land$]{
The \textit{disjunction} is false, unless: $p$ true, $q$ true.
}
\item[$\Leftrightarrow$]{%
The \textit{logical equivalence} expresses \textit{tautologies}: %
$p \Leftrightarrow q$ is true, unless: %
$p$ has not the truth value of $q$. %
It is easily checked that %
%
$(p \Leftrightarrow q) \Leftrightarrow %
\left(
(p \Rightarrow q) \land
(p \Leftarrow q)
\right)$; see the below definitions.
}
\item[$\Rightarrow$]{%
The logical implication is denoted by $\Rightarrow$: %
$p \Rightarrow q$ means %
\textit{if (criterion/premise) $p$ then (conclusion) $q$}, or, %
alternatively, \textit{$p$ implies $q$}. %%
%
$p \Rightarrow q $ is formally defined as $\lnot p \lor q$. %
%
Remark that the ``reasoning'' $p \Rightarrow q $ is always valid, unless: %
$p$ true, $q$ false. Moreover, %
%
$p \land (p \Rightarrow q) \Rightarrow q$ %
%
is always true.
}
\item[$\Leftarrow$]{ $q \Leftarrow p$ is $ p\Rightarrow q $ read backward.
A common pronunciation is \textit{$q$ since $p$}.
}
\end{enumerate}
%
For a subtle introduction to proposition logic, %
see Section 1.3 and Subsection 16.1.3 of \cite{SpecifyingSystems}.
%
\subsection{Iverson notation}%
Given a boolean expression $\varphi$, %
$\boolean{\varphi}$ returns the truth value of $\varphi$, encoded as follows, %
%
\begin{align} \nonumber
\boolean{\varphi}\triangleq
\begin{cases}
0 & \quad\quad \text{if } \varphi \text{ is false;} \\
1 & \quad\quad \text{if } \varphi \text{ is true.}
\end{cases}
\end{align}
%
For example, $\boolean{1 > 0} = 1$ but $\boolean{ \sqrt{2} \in \Q} = 0$.
\section{Special terms}
\subsection{Halmos' iff and definitions}%
\iif is a short for ``if and only if". %
Splitting \iif into \textit{if-then} clauses shows that it is just %
a rewording of the logical equivalence $\Leftrightarrow$. %
All definitions will use the \iif format; %
which is consistent with the fact that every definition expresses a tautology.
%
\subsection{Assigning values}%
Given variables $\varit{a}$ and $\varit{b}$, $\triangleq$ is a specialization %
of $=$. We say that $x\triangleq y$ \iif $x$ and $y$ are assumed to be equal.
Usually, $x\triangleq y$ means that $x$ is assigned the previously known
value $y$ (some authors write $x:=y$) but this is not a limitation.
Definitions can be redundant and may overlap. The only restriction is that %
$x\triangleq y$ is inconsistent whether $x\neq y$.
\subsection{Equinumerosity}%
$a\equiv b$ means that there exists a bijection $\to$ that maps $a$ to $b$; %
which let us identify $a$ with $b$. %
In a metric space context, $a\equiv b$ means that $\to$ is isometric.
\section{Topological vector spaces}
\subsection{Scalar field}%
The usual (complete) scalar field is $\C$. %
A property, \eg linearity, that is true on $\C$ is also true on $\R$. %
The complex case is then a {\it special case} of the real one. %
Sometimes, this specialization is not harmless. %
For example, theorem 12.7 of \cite{FA} asserts that, in a Hilbert space $H$ %
equipped with the inner product $\bra{\,\cdot\,}\ket{\,\cdot\,}$, %
every nonzero linear continuous operator $T$ ``breaks orthogonality'', %
in the sense that there always exists $x=x(T)$ in $H$ that satisfies %
%
$\bra{Tx}\ket{x} \neq 0$. %
%
The proof of this theorem strongly depends on the complex field. %
Actually, a real counterpart does not exists. %
To see that, consider the $90^\circ$ rotations of the euclidian plane. %
%
Nevertheless, {\it unless the contrary is explicitely mentioned}, %
the exension to the real case will always be obvious. %
So, taking $\C$ as the scalar field shall mean %
%
\begin{quote}{\it %
Instead of letting the scalar field undefined, we choose $\C$ for the sake of %
expessivity. But considering $\R$ instead of %
$\C$ would actually make no difference here.
}
\end{quote}
%
\subsection{Vector space bases}\label{notations: vector spaces: vector space bases}
Given a vector space $X$ over $\C$ (or, more generally, over a field), %
a subset $B$ of $X$ is a basis of $X$ \iif %
$(z_u) \mapsto \sum_{u\in B} z_u u$ bijectively maps all {\it almost null} %
$z: B \to \K, u \mapsto z_u$ %
onto $X$. %
%
The axiom of choice (AC) forces %
\begin{enumerate}
\item the existence of such $B$ %
(the proof is similar to the second part of the Hahn-Banach theorem [3.1] of \cite{FA} %
with $B$ playing the role of $\Lambda$); %
\item all bases to have the same cardinal, %
which is called the {\it dimension} of $X$ and is denoted as $\dim(X)$. %
\end{enumerate}
%
We now come to the {\it finite-dimensional} case, \ie $\dim(X)$ is a nonnegative integer $n$. %
Remark that $n=0$, \ie $B=\emptyset$, means that $X$ is a singleton. %
%
Our first step consists in studying $\C^n$, which is the standard $n$-dimensional vector space.
%
\subsection{Finite-dimensional spaces}\label{notations: vector spaces: finite-dimensional vector spaces}%
%
\quote{\it%
From now on, the zero-dimensional case, which is trivial, shall be skipped. %
}
%
\subsubsection{The product topology of $\C^n$}\label{notations: vector spaces: finite-dimensional vector spaces: the product topology of Cn}
%
As the $n$-th power of $\C$, $\C^n$ has a standard base $\set{e_k}{k = 1, \dots, n}$ %
(where $e_k = 1_{\singleton{k}})$. %
Furthermore, it is topologized by the {\it polydiscs} %%
\begin{align}
\prod_{i=1}^{n} D_{r_i} \quad (D_{r_i} \Def \set{z_i \in C}{\magnitude{z_i} < r_i}), %
\end{align}
%as $r_i$ ranges over the real line. %%$]0, \infty[$. %
Equivalently, we may equipp $\C^n$ with the euclidian norm % %
\begin{align}
\norma{2}{z} \Def \sqrt{\magnitude{z_1}^2 + \cdots + \magnitude{z_n}^2} \quad \left(z = (z_1, \dots, z_n) \in \C^n\right),
\end{align}
%
whose open balls centered at the origin are all nonempty%
\begin{align}
B_r \Def \set{z\in \C^n}{\norma{2}{z} < r}.
\end{align}
To see such equivalence, first pick a positive $r$ then set $r_i = r/\sqrt{n}$, so that %
\begin{align}
\prod_{i=1}^{n} D_{r_i} \subseteq B_r.
\end{align}
%
Next, conversely choosing $r = \min\{r_1, \dots, r_n\}$ yields %
\begin{align}
B_r \subseteq \prod_{i=1}^{n} D_{r_i} .
\end{align}
%
\subsubsection{Topology of a finite-dimensional vector space}
It is customary to identify any $n$-dimensional vector space %
with $\C^n$ topologized by the euclidian norm; %
see [\ref{notations: vector spaces: finite-dimensional vector spaces: the product topology of Cn}]. %
%
To see this, pick a $n$-dimensional vector space $Y$, of basis $\{u_1, \dots, u_n\}$; %
see [\ref{notations: vector spaces: vector space bases}]. %
%
Setting $u_k = f(e_k)$ means a special case of [1.20] of \cite{FA}, %
where $f$ is an isomorphism of $\C^n$ onto $Y$. %
%
Actually, $Y$ is endowed with the topology $\set{f(U)}{U \text{ open}}$, %
%
and [1.21] of \cite{FA} states that $f$ is an homeomorphism, which implies that %
%
\begin{quote}
$\set{f(U)}{U \text{ open}}$ {\it is the only vector space topology for $Y$}. %
\end{quote}
%
As a consequence, $Y$ is necessarily locally convex and bounded; \ie normable; %
see [1.39] of \cite{FA}. %
Moreover, provided a norm $\norm{\,\cdot\,}$ on $Y$, there exists a positive {\it modulus of continuity} $C=C_f$ such that %
%
\begin{align}\label{norm equivalence 1}
\norm{y} \leq C \norma{2}{z} \quad \left((z, y) \in f\right),
\end{align}
%
since $f$ is continuous. %
%
Now pick a $n$-dimensional topological vector space $W$ then repeat the same reasoning, %
first with $g: \C^n \to W$, %
next with $h = g\circ f^{\,\minus 1}$, in the role of $f$, and so conclude that %
the homeomorphism $h$ maps $Y$'s topology onto $Y$'s topology %
and that $W$ is normable. %
To sum it up, %
%
\begin{quote}
$\dim(Y) = \dim(W)$, \ie %
$Y$ {\it and } $W$ {\it are isomorphic each other, }
{\it means that }$Y${\it \,and }$W${\it \,are two normable spaces that are homeomorphic each other.}
\end{quote}
%
We then equip $W$ with a norm $\lvert\lvert\lvert\,\cdot\,\rvert\rvert\rvert$, %
so that %
%
\begin{align}
\lvert\lvert\lvert w \rvert\rvert\rvert \leq C_h \norm{y} \quad \left((y, w) \in h \right)
\end{align}
%
for some positive $C_h$. %
%
The special case $g=f$ means that $Y$'s norms are equivalent, %
in the sense that there exists a positive $C_{\id{}}$ such that %
\begin{align}
\lvert\lvert\lvert y \rvert\rvert\rvert \leq C_{\id{}} \norm{y}. %
\end{align}
%
\subsubsection{The standard norms $\norma{1}{\,\cdot\,}$, $\norma{2}{\,\cdot\,}$, $\norma{\infty}{\,\cdot\,}$}
In all special cases $Y=\C^n$ topologized by the standard norms $1$, $2$, $\infty$,
the optimal modulus, \ie the smallest $C = C_{i, j}$ such that %
\begin{align}
\norma{j}{z} \leq C_{i, j} \norma{i}{z} \quad \left(z \in \C^n \right)),
\end{align}
is easily derived from definitions - see [1.19] of \cite{FA} - %
with the noticeable exception of $C_{2, 1}=\sqrt{n}$, which is usually seen as a special {\it Cauchy-Schwarz inequality}; %
see (1) in [12.2] of \cite{FA}. %
The very steps of this classical hack are left to the reader. %
% END