-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathindex.html
198 lines (157 loc) · 13.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="IPython Cookbook, ">
<!-- FAVICON -->
<link rel="apple-touch-icon" sizes="57x57" href="/apple-touch-icon-57x57.png">
<link rel="apple-touch-icon" sizes="114x114" href="/apple-touch-icon-114x114.png">
<link rel="apple-touch-icon" sizes="72x72" href="/apple-touch-icon-72x72.png">
<link rel="apple-touch-icon" sizes="144x144" href="/apple-touch-icon-144x144.png">
<link rel="apple-touch-icon" sizes="60x60" href="/apple-touch-icon-60x60.png">
<link rel="apple-touch-icon" sizes="120x120" href="/apple-touch-icon-120x120.png">
<link rel="apple-touch-icon" sizes="76x76" href="/apple-touch-icon-76x76.png">
<link rel="apple-touch-icon" sizes="152x152" href="/apple-touch-icon-152x152.png">
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon-180x180.png">
<link rel="icon" type="image/png" href="/favicon-192x192.png" sizes="192x192">
<link rel="icon" type="image/png" href="/favicon-160x160.png" sizes="160x160">
<link rel="icon" type="image/png" href="/favicon-96x96.png" sizes="96x96">
<link rel="icon" type="image/png" href="/favicon-16x16.png" sizes="16x16">
<link rel="icon" type="image/png" href="/favicon-32x32.png" sizes="32x32">
<meta name="msapplication-TileColor" content="#da532c">
<meta name="msapplication-TileImage" content="/mstile-144x144.png">
<link rel="alternate" href="https://ipython-books.github.io/feeds/all.atom.xml" type="application/atom+xml" title="IPython Cookbook Full Atom Feed"/>
<title>IPython Cookbook - 4.8. Processing large NumPy arrays with memory mapping</title>
<link href="//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet">
<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/pure/0.3.0/pure-min.css">
<!--[if lte IE 8]>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/pure/0.5.0/pure-min.css">
<![endif]-->
<!--[if gt IE 8]><!-->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/pure/0.5.0/pure-min.css">
<!--<![endif]-->
<link rel="stylesheet" href="https://ipython-books.github.io/theme/css/styles.css">
<link rel="stylesheet" href="https://ipython-books.github.io/theme/css/pygments.css">
<!-- <link href='https://fonts.googleapis.com/css?family=Lato:300,400,700' rel='stylesheet' type='text/css'> -->
<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,500" rel="stylesheet" type="text/css">
<link href='https://fonts.googleapis.com/css?family=Ubuntu+Mono' rel='stylesheet' type='text/css'>
<script src="//cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
</head>
<body>
<header id="header" class="pure-g">
<div class="pure-u-1 pure-u-md-3-4">
<div id="menu">
<div class="pure-menu pure-menu-open pure-menu-horizontal">
<ul>
<li><a href="/">home</a></li>
<li><a href="https://github.com/ipython-books/cookbook-2nd-code">Jupyter notebooks</a></li>
<li><a href="https://github.com/ipython-books/minibook-2nd-code">minibook</a></li>
<li><a href="https://cyrille.rossant.net">author</a></li>
</ul> </div>
</div>
</div>
<div class="pure-u-1 pure-u-md-1-4">
<div id="social">
<div class="pure-menu pure-menu-open pure-menu-horizontal">
<ul>
<li><a href="https://twitter.com/cyrillerossant"><i class="fa fa-twitter"></i></a></li>
<li><a href="https://github.com/ipython-books/cookbook-2nd"><i class="fa fa-github"></i></a></li>
</ul> </div>
</div>
</div>
</header>
<div id="layout" class="pure-g">
<section id="content" class="pure-u-1 pure-u-md-4-4">
<div class="l-box">
<header id="page-header">
<h1>4.8. Processing large NumPy arrays with memory mapping</h1>
</header>
<section id="page">
<p><a href="/"><img src="https://raw.githubusercontent.com/ipython-books/cookbook-2nd/master/cover-cookbook-2nd.png" align="left" alt="IPython Cookbook, Second Edition" height="130" style="margin-right: 20px; margin-bottom: 10px;" /></a> <em>This is one of the 100+ free recipes of the <a href="/">IPython Cookbook, Second Edition</a>, by <a href="http://cyrille.rossant.net">Cyrille Rossant</a>, a guide to numerical computing and data science in the Jupyter Notebook. The ebook and printed book are available for purchase at <a href="https://www.packtpub.com/big-data-and-business-intelligence/ipython-interactive-computing-and-visualization-cookbook-second-e">Packt Publishing</a>.</em></p>
<p>▶ <em><a href="https://github.com/ipython-books/cookbook-2nd">Text on GitHub</a> with a <a href="https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode">CC-BY-NC-ND license</a></em><br />
▶ <em><a href="https://github.com/ipython-books/cookbook-2nd-code">Code on GitHub</a> with a <a href="https://opensource.org/licenses/MIT">MIT license</a></em></p>
<p>▶ <a href="https://ipython-books.github.io/chapter-4-profiling-and-optimization/"><strong><em>Go to</em></strong> <em>Chapter 4 : Profiling and Optimization</em></a><br />
▶ <a href="https://github.com/ipython-books/cookbook-2nd-code/blob/master/chapter04_optimization/08_memmap.ipynb"><em><strong>Get</strong> the Jupyter notebook</em></a> </p>
<p>Sometimes, we need to deal with NumPy arrays that are too big to fit in the system memory. A common solution is to use <strong>memory mapping</strong> and implement <strong>out-of-core computations</strong>. The array is stored in a file on the hard drive, and we create a memory-mapped object to this file that can be used as a regular NumPy array. Accessing a portion of the array results in the corresponding data being automatically fetched from the hard drive. Therefore, we only consume what we use.</p>
<h2>How to do it...</h2>
<p><strong>1. </strong> Let's create a memory-mapped array in write mode:</p>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
</pre></div>
<div class="highlight"><pre><span></span><span class="n">nrows</span><span class="p">,</span> <span class="n">ncols</span> <span class="o">=</span> <span class="mi">1000000</span><span class="p">,</span> <span class="mi">100</span>
</pre></div>
<div class="highlight"><pre><span></span><span class="n">f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">memmap</span><span class="p">(</span><span class="s1">'memmapped.dat'</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span>
<span class="n">mode</span><span class="o">=</span><span class="s1">'w+'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">nrows</span><span class="p">,</span> <span class="n">ncols</span><span class="p">))</span>
</pre></div>
<p><strong>2. </strong> Let's feed the array with random values, one column at a time because our system's memory is limited!</p>
<div class="highlight"><pre><span></span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">ncols</span><span class="p">):</span>
<span class="n">f</span><span class="p">[:,</span> <span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">nrows</span><span class="p">)</span>
</pre></div>
<p>We save the last column of the array:</p>
<div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">f</span><span class="p">[:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span>
</pre></div>
<p><strong>3. </strong> Now, we flush memory changes to disk by deleting the object:</p>
<div class="highlight"><pre><span></span><span class="k">del</span> <span class="n">f</span>
</pre></div>
<p><strong>4. </strong> Reading a memory-mapped array from disk involves the same <code>memmap()</code> function. The data type and the shape need to be specified again, as this information is not stored in the file:</p>
<div class="highlight"><pre><span></span><span class="n">f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">memmap</span><span class="p">(</span><span class="s1">'memmapped.dat'</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">nrows</span><span class="p">,</span> <span class="n">ncols</span><span class="p">))</span>
</pre></div>
<div class="highlight"><pre><span></span><span class="n">np</span><span class="o">.</span><span class="n">array_equal</span><span class="p">(</span><span class="n">f</span><span class="p">[:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">x</span><span class="p">)</span>
</pre></div>
<div class="highlight"><pre><span></span>True
</pre></div>
<div class="highlight"><pre><span></span><span class="k">del</span> <span class="n">f</span>
</pre></div>
<blockquote>
<p>This method is not adapted for long-term storage of data and data sharing. The following recipe in this chapter will show a better way based on the HDF5 file format.</p>
</blockquote>
<h2>How it works...</h2>
<p>Memory mapping lets you work with huge arrays almost as if they were regular arrays. Python code that accepts a NumPy array as input will also accept a memmap array. However, we need to ensure that the array is used efficiently. That is, the array is never loaded as a whole (otherwise, it would waste system memory and would dismiss any advantage of the technique).</p>
<p>Memory mapping is also useful when you have a huge file containing raw data in a homogeneous binary format with a known data type and shape. In this case, an alternative solution is to use NumPy's <code>fromfile()</code> function with a file handle created with Python's native <code>open()</code> function. Using <code>f.seek()</code> lets you position the cursor at any location and load a given number of bytes into a NumPy array.</p>
<h2>There's more...</h2>
<p>Another way of dealing with huge NumPy matrices is to use <strong>sparse matrices</strong> through SciPy's <strong>sparse</strong> subpackage. It is adapted when matrices contain mostly zeros, as is often the case with simulations of partial differential equations, graph algorithms, or specific machine learning applications. Representing matrices as dense structures can be a waste of memory, and sparse matrices offer a more efficient compressed representation.</p>
<p>Using sparse matrices in SciPy is not straightforward as multiple implementations exist. Each implementation is best for a particular kind of application. Here are a few references:</p>
<ul>
<li>SciPy lecture notes about sparse matrices, available at <a href="http://scipy-lectures.github.io/advanced/scipy_sparse/index.html">http://scipy-lectures.github.io/advanced/scipy_sparse/index.html</a></li>
<li>Reference documentation on sparse matrices, at <a href="http://docs.scipy.org/doc/scipy/reference/sparse.html">http://docs.scipy.org/doc/scipy/reference/sparse.html</a></li>
<li>Documentation of memmap, at <a href="http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html">http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html</a></li>
</ul>
<h2>See also</h2>
<ul>
<li>Manipulating large arrays with HDF5</li>
<li>Performing out-of-core computations on large arrays with Dask</li>
</ul>
</section>
</div>
</section>
<footer id="footer" class="pure-u-1 pure-u-md-4-4">
<div class="l-box">
<div>
<p>© <a href="https://cyrille.rossant.net">Cyrille Rossant</a> –
Built with <a href="https://github.com/PurePelicanTheme/pure-single">Pure Theme</a>
for <a href="https://blog.getpelican.com/">Pelican</a>
</p>
</div>
</div>
</footer>
</div>
<!-- Start of StatCounter Code for Default Guide -->
<script type="text/javascript">
var sc_project=9752080;
var sc_invisible=1;
var sc_security="c177b501";
var scJsHost = (("https:" == document.location.protocol) ?
"https://secure." : "http://www.");
</script>
<script type="text/javascript"
src="https://www.statcounter.com/counter/counter.js"
async></script>
<noscript><div class="statcounter"><a title="Web Analytics"
href="https://statcounter.com/" target="_blank"><img
class="statcounter"
src="//c.statcounter.com/9752080/0/c177b501/1/" alt="Web
Analytics"></a></div></noscript>
<!-- End of StatCounter Code for Default Guide -->
</body>
</html>