-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathmock_provider.py
119 lines (96 loc) · 3.41 KB
/
mock_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright (c) 2025 Microsoft Corporation.
# Licensed under the MIT License
"""A module containing mock model provider definitions."""
from collections.abc import AsyncGenerator, Generator
from typing import Any
from pydantic import BaseModel
from graphrag.config.models.language_model_config import LanguageModelConfig
from graphrag.language_model.response.base import (
BaseModelOutput,
BaseModelResponse,
ModelResponse,
)
class MockChatLLM:
"""A mock chat LLM provider."""
def __init__(
self,
responses: list[str | BaseModel] | None = None,
config: LanguageModelConfig | None = None,
json: bool = False,
**kwargs: Any,
):
self.responses = config.responses if config and config.responses else responses
self.response_index = 0
async def achat(
self,
prompt: str,
history: list | None = None,
**kwargs,
) -> ModelResponse:
"""Return the next response in the list."""
return self.chat(prompt, history, **kwargs)
async def achat_stream(
self,
prompt: str,
history: list | None = None,
**kwargs,
) -> AsyncGenerator[str, None]:
"""Return the next response in the list."""
if not self.responses:
return
for response in self.responses:
response = (
response.model_dump_json()
if isinstance(response, BaseModel)
else response
)
yield response
def chat(
self,
prompt: str,
history: list | None = None,
**kwargs,
) -> ModelResponse:
"""Return the next response in the list."""
if not self.responses:
return BaseModelResponse(output=BaseModelOutput(content=""))
response = self.responses[self.response_index % len(self.responses)]
self.response_index += 1
parsed_json = response if isinstance(response, BaseModel) else None
response = (
response.model_dump_json() if isinstance(response, BaseModel) else response
)
return BaseModelResponse(
output=BaseModelOutput(content=response),
parsed_response=parsed_json,
)
def chat_stream(
self,
prompt: str,
history: list | None = None,
**kwargs,
) -> Generator[str, None]:
"""Return the next response in the list."""
raise NotImplementedError
class MockEmbeddingLLM:
"""A mock embedding LLM provider."""
def __init__(self, **kwargs: Any):
pass
def embed_batch(self, text_list: list[str], **kwargs: Any) -> list[list[float]]:
"""Generate an embedding for the input text."""
if isinstance(text_list, str):
return [[1.0, 1.0, 1.0]]
return [[1.0, 1.0, 1.0] for _ in text_list]
def embed(self, text: str, **kwargs: Any) -> list[float]:
"""Generate an embedding for the input text."""
return [1.0, 1.0, 1.0]
async def aembed(self, text: str, **kwargs: Any) -> list[float]:
"""Generate an embedding for the input text."""
return [1.0, 1.0, 1.0]
async def aembed_batch(
self, text_list: list[str], **kwargs: Any
) -> list[list[float]]:
"""Generate an embedding for the input text."""
if isinstance(text_list, str):
return [[1.0, 1.0, 1.0]]
return [[1.0, 1.0, 1.0] for _ in text_list]