A basic chat flow defined using class entry. It demonstrates how to create a chatbot that can remember previous interactions and use the conversation history to generate next message.
Install promptflow sdk and other dependencies in this folder:
pip install -r requirements.txt
In this flow, you will learn
- how to compose a chat flow.
- prompt template format of LLM tool chat api. Message delimiter is a separate line containing role name and colon: "system:", "user:", "assistant:".
See OpenAI Chat for more about message role.
system: You are a chatbot having a conversation with a human. user: {{question}}
- how to consume chat history in prompt.
{% for item in chat_history %} {{item.role}}: {{item.content}} {% endfor %}
-
Prepare your Azure OpenAI resource follow this instruction and get your
api_key
if you don't have one. -
Setup connection
Go to "Prompt flow" "Connections" tab. Click on "Create" button, select one of prompty supported connection types and fill in the configurations.
Or use CLI to create connection:
# Override keys with --set to avoid yaml file changes
pf connection create --file ../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection
Note in flow.flex.yaml we are using connection named open_ai_connection
.
# show registered connection
pf connection show --name open_ai_connection
- Run as normal Python file
python flow.py
- Test flow
pf flow test --flow flow:ChatFlow --init init.json --inputs question="What's Azure Machine Learning?"
- Test flow with yaml
You'll need to write flow entry
flow.flex.yaml
to test with prompt flow.
# run chat flow with default question in flow.flex.yaml
pf flow test --flow .
# run chat flow with new question
pf flow test --flow . --inputs question="What is ChatGPT? Please explain with consise statement."
# run chat flow with specific init and inputs
pf flow test --flow . --init init.json --inputs sample.json
- Test flow: multi turn
# start test in chat UI
pf flow test --flow . --ui --init init.json
- Create run with multiple lines data
pf run create --flow . --init init.json --data ./data.jsonl --column-mapping question='${data.question}' --stream
You can also skip providing column-mapping
if provided data has same column name as the flow.
Reference here for default behavior when column-mapping
not provided in CLI.
- List and show run meta
# list created run
pf run list
# get a sample run name
name=$(pf run list -r 10 | jq '.[] | select(.name | contains("chat_basic_")) | .name'| head -n 1 | tr -d '"')
# show specific run detail
pf run show --name $name
# show output
pf run show-details --name $name
# visualize run in browser
pf run visualize --name $name
- Assume we already have a connection named
open_ai_connection
in workspace.
# set default workspace
az account set -s <your_subscription_id>
az configure --defaults group=<your_resource_group_name> workspace=<your_workspace_name>
- Create run
# run with environment variable reference connection in azureml workspace
pfazure run create --flow . --init init.json --data ./data.jsonl --column-mapping question='${data.question}' --stream
# run using yaml file
pfazure run create --file run.yml --init init.json --stream