-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_pandas.py
480 lines (401 loc) · 13.5 KB
/
bench_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import questdb.ingress as qi
import numpy as np
import pandas as pd
import random
import time
import sys
import pprint
import textwrap
from concurrent.futures import ThreadPoolExecutor, Future
from numba import vectorize, float64
from .common import CpuTable
@vectorize([float64(float64, float64)])
def _clip_add(x, y):
z = x + y
# Clip to the 0 and 100 boundaries
if z < 0.0:
z = 0.0
elif z > 100.0:
z = 100.0
return z
_REGIONS = {
"us-east-1": [
"us-east-1a",
"us-east-1b",
"us-east-1c",
"us-east-1e"],
"us-west-1": [
"us-west-1a",
"us-west-1b"],
"us-west-2": [
"us-west-2a",
"us-west-2b",
"us-west-2c"],
"eu-west-1": [
"eu-west-1a",
"eu-west-1b",
"eu-west-1c"],
"eu-central-1": [
"eu-central-1a",
"eu-central-1b"],
"ap-southeast-1": [
"ap-southeast-1a",
"ap-southeast-1b"],
"ap-southeast-2": [
"ap-southeast-2a",
"ap-southeast-2b"],
"ap-northeast-1": [
"ap-northeast-1a",
"ap-northeast-1c"],
"sa-east-1": [
"sa-east-1a",
"sa-east-1b",
"sa-east-1c"],
}
_REGION_KEYS = list(_REGIONS.keys())
_MACHINE_RACK_CHOICES = [
str(n)
for n in range(100)]
_MACHINE_OS_CHOICES = [
"Ubuntu16.10",
"Ubuntu16.04LTS",
"Ubuntu15.10"]
_MACHINE_ARCH_CHOICES = [
"x64",
"x86"]
_MACHINE_TEAM_CHOICES = [
"SF",
"NYC",
"LON",
"CHI"]
_MACHINE_SERVICE_CHOICES = [
str(n)
for n in range(20)]
_MACHINE_SERVICE_VERSION_CHOICES = [
str(n)
for n in range(2)]
_MACHINE_SERVICE_ENVIRONMENT_CHOICES = [
"production",
"staging",
"test"]
def gen_dataframe(seed, row_count, scale):
rand, np_rand = random.Random(seed), np.random.default_rng(seed)
def mk_symbols_series(strings):
return pd.Series(strings, dtype='string[pyarrow]')
def mk_hostname():
repeated = [f'host_{n}' for n in range(scale)]
repeat_count = row_count // scale + 1
values = (repeated * repeat_count)[:row_count]
return mk_symbols_series(values)
def rep_choice(choices):
return rand.choices(choices, k=row_count)
def mk_cpu_series():
values = np_rand.normal(0, 1, row_count + 1)
_clip_add.accumulate(values, out=values)
return pd.Series(values[1:], dtype='float64')
region = []
datacenter = []
for _ in range(row_count):
reg = random.choice(_REGION_KEYS)
region.append(reg)
datacenter.append(rand.choice(_REGIONS[reg]))
df = pd.DataFrame({
'hostname': mk_hostname(),
'region': mk_symbols_series(region),
'datacenter': mk_symbols_series(datacenter),
'rack': mk_symbols_series(rep_choice(_MACHINE_RACK_CHOICES)),
'os': mk_symbols_series(rep_choice(_MACHINE_OS_CHOICES)),
'arch': mk_symbols_series(rep_choice(_MACHINE_ARCH_CHOICES)),
'team': mk_symbols_series(rep_choice(_MACHINE_TEAM_CHOICES)),
'service': mk_symbols_series(rep_choice(_MACHINE_SERVICE_CHOICES)),
'service_version': mk_symbols_series(
rep_choice(_MACHINE_SERVICE_VERSION_CHOICES)),
'service_environment': mk_symbols_series(
rep_choice(_MACHINE_SERVICE_ENVIRONMENT_CHOICES)),
'usage_user': mk_cpu_series(),
'usage_system': mk_cpu_series(),
'usage_idle': mk_cpu_series(),
'usage_nice': mk_cpu_series(),
'usage_iowait': mk_cpu_series(),
'usage_irq': mk_cpu_series(),
'usage_softirq': mk_cpu_series(),
'usage_steal': mk_cpu_series(),
'usage_guest': mk_cpu_series(),
'usage_guest_nice': mk_cpu_series(),
'timestamp': pd.date_range('2016-01-01', periods=row_count, freq='10s'),
})
df.index.name = 'cpu'
return df
def parse_args():
seed = random.randrange(sys.maxsize)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--row-count', type=int, default=10_000_000)
parser.add_argument('--scale', type=int, default=4000)
parser.add_argument('--seed', type=int, default=seed)
parser.add_argument('--write-ilp', type=str, default=None)
parser.add_argument('--shell', action='store_true', default=False)
parser.add_argument('--send', action='store_true', default=False)
parser.add_argument('--host', type=str, default='localhost')
parser.add_argument('--ilp-port', type=int, default=9009)
parser.add_argument('--http-port', type=int, default=9000)
parser.add_argument('--op', choices=['dataframe', 'iterrows', 'itertuples'],
default='dataframe')
parser.add_argument('--workers', type=int, default=None)
parser.add_argument('--worker-chunk-row-count', type=int, default=10_000)
parser.add_argument('--validation-query-timeout', type=float, default=120.0)
parser.add_argument('--debug', action='store_true', default=False)
return parser.parse_args()
def chunk_up_dataframe(df, chunk_row_count):
dfs = []
for i in range(0, len(df), chunk_row_count):
dfs.append(df.iloc[i:i + chunk_row_count])
return dfs
def assign_dfs_to_workers(dfs, workers):
dfs_by_worker = [[] for _ in range(workers)]
for i, df in enumerate(dfs):
dfs_by_worker[i % workers].append(df)
return dfs_by_worker
def sanity_check_split(df, dfs):
df2 = pd.concat(dfs)
assert len(df) == len(df2)
assert df.equals(df2)
def sanity_check_split2(df, dfs_by_worker):
df2 = pd.concat([
df
for dfs in dfs_by_worker
for df in dfs])
df2.sort_values(by='timestamp', inplace=True)
assert len(df) == len(df2)
assert df.equals(df2)
def chunk_up_by_worker(df, workers, chunk_row_count):
dfs = chunk_up_dataframe(df, chunk_row_count)
sanity_check_split(df, dfs)
dfs_by_worker = assign_dfs_to_workers(dfs, workers)
sanity_check_split2(df, dfs_by_worker)
return dfs_by_worker
def send_py_row(obj, df):
for _index, row in df.iterrows():
symbols = {
'hostname': row['hostname'],
'region': row['region'],
'datacenter': row['datacenter'],
'rack': row['rack'],
'os': row['os'],
'arch': row['arch'],
'team': row['team'],
'service': row['service'],
'service_version': row['service_version'],
'service_environment': row['service_environment']}
columns = {
'usage_user': row['usage_user'],
'usage_system': row['usage_system'],
'usage_idle': row['usage_idle'],
'usage_nice': row['usage_nice'],
'usage_iowait': row['usage_iowait'],
'usage_irq': row['usage_irq'],
'usage_softirq': row['usage_softirq'],
'usage_steal': row['usage_steal'],
'usage_guest': row['usage_guest'],
'usage_guest_nice': row['usage_guest_nice']}
obj.row(
'cpu',
symbols=symbols,
columns=columns,
at=qi.TimestampNanos(row['timestamp'].value))
def send_py_tuple(obj, df):
for row in df.itertuples():
symbols = {
'hostname': row.hostname,
'region': row.region,
'datacenter': row.datacenter,
'rack': row.rack,
'os': row.os,
'arch': row.arch,
'team': row.team,
'service': row.service,
'service_version': row.service_version,
'service_environment': row.service_environment}
columns = {
'usage_user': row.usage_user,
'usage_system': row.usage_system,
'usage_idle': row.usage_idle,
'usage_nice': row.usage_nice,
'usage_iowait': row.usage_iowait,
'usage_irq': row.usage_irq,
'usage_softirq': row.usage_softirq,
'usage_steal': row.usage_steal,
'usage_guest': row.usage_guest,
'usage_guest_nice': row.usage_guest_nice}
obj.row(
'cpu',
symbols=symbols,
columns=columns,
at=qi.TimestampNanos(row.timestamp.value))
def dataframe(obj, df):
obj.dataframe(df, symbols=True, at='timestamp')
_OP_MAP = {
'dataframe': dataframe,
'iterrows': send_py_row,
'itertuples': send_py_tuple}
def serialize_one(args, df):
buf = qi.Buffer()
op = _OP_MAP[args.op]
t0 = time.monotonic()
op(buf, df)
t1 = time.monotonic()
elapsed = t1 - t0
if args.write_ilp:
if args.write_ilp == '-':
print(buf)
else:
with open(args.write_ilp, 'w') as f:
f.write(str(buf))
row_speed = args.row_count / elapsed / 1_000_000.0
print('Serialized:')
print(
f' {args.row_count} rows in {elapsed:.2f}s: '
f'{row_speed:.2f} mil rows/sec.')
size_mb = len(buf) / 1024.0 / 1024.0
throughput_mb = size_mb / elapsed
print(
f' ILP Buffer size: {size_mb:.2f} MiB: '
f'{throughput_mb:.2f} MiB/sec.')
return len(buf)
def serialize_workers(args, df):
dfs_by_worker = chunk_up_by_worker(
df, args.workers, args.worker_chunk_row_count)
bufs = [qi.Buffer() for _ in range(args.workers)]
tpe = ThreadPoolExecutor(max_workers=args.workers)
# Warm up the thread pool.
tpe.map(lambda e: None, [None] * args.workers)
op = _OP_MAP[args.op]
if args.debug:
repld = [False]
import threading
lock = threading.Lock()
def serialize_dfs(buf, dfs):
size = 0
for df in dfs:
try:
op(buf, df)
except Exception as e:
with lock:
if not repld[0]:
import code
code.interact(local=locals())
repld[0] = True
raise e
size += len(buf)
buf.clear()
return size
else:
def serialize_dfs(buf, dfs):
size = 0
for df in dfs:
op(buf, df)
size += len(buf)
buf.clear()
return size
t0 = time.monotonic()
futures = [
tpe.submit(serialize_dfs, buf, dfs)
for buf, dfs in zip(bufs, dfs_by_worker)]
sizes = [fut.result() for fut in futures]
t1 = time.monotonic()
size = sum(sizes)
elapsed = t1 - t0
row_speed = args.row_count / elapsed / 1_000_000.0
print('Serialized:')
print(
f' {args.row_count} rows in {elapsed:.2f}s: '
f'{row_speed:.2f} mil rows/sec.')
throughput_mb = size / elapsed / 1024.0 / 1024.0
size_mb = size / 1024.0 / 1024.0
print(
f' ILP Buffer size: {size_mb:.2f} MiB: '
f'{throughput_mb:.2f} MiB/sec.')
return size
def send_one(args, df, size):
op = _OP_MAP[args.op]
with qi.Sender(args.host, args.ilp_port) as sender:
t0 = time.monotonic()
op(sender, df)
sender.flush()
t1 = time.monotonic()
elapsed = t1 - t0
row_speed = args.row_count / elapsed / 1_000_000.0
print('Sent:')
print(
f' {args.row_count} rows in {elapsed:.2f}s: '
f'{row_speed:.2f} mil rows/sec.')
throughput_mb = size / elapsed / 1024.0 / 1024.0
size_mb = size / 1024.0 / 1024.0
print(
f' ILP Buffer size: {size_mb:.2f} MiB: '
f'{throughput_mb:.2f} MiB/sec.')
def send_workers(args, df, size):
dfs_by_worker = chunk_up_by_worker(
df, args.workers, args.worker_chunk_row_count)
tpe = ThreadPoolExecutor(max_workers=args.workers)
def connected_sender():
sender = qi.Sender(args.host, args.ilp_port)
sender.connect()
return sender
senders = [
tpe.submit(connected_sender)
for _ in range(args.workers)]
senders: list[qi.Sender] = [f.result() for f in senders]
def worker_job(op, sender, worker_dfs):
try:
for df in worker_dfs:
op(sender, df)
sender.flush()
finally:
sender.close()
op = _OP_MAP[args.op]
t0 = time.monotonic()
futures: list[Future] = [
tpe.submit(worker_job, op, sender, dfs)
for sender, dfs in zip(senders, dfs_by_worker)]
for f in futures:
f.result()
t1 = time.monotonic()
elapsed = t1 - t0
row_speed = args.row_count / elapsed / 1_000_000.0
print('Sent:')
print(
f' {args.row_count} rows in {elapsed:.2f}s: '
f'{row_speed:.2f} mil rows/sec.')
throughput_mb = size / elapsed / 1024.0 / 1024.0
size_mb = size / 1024.0 / 1024.0
print(
f' ILP Buffer size: {size_mb:.2f} MiB: '
f'{throughput_mb:.2f} MiB/sec.')
def main():
args = parse_args()
pretty_args = textwrap.indent(pprint.pformat(vars(args)), ' ')
print(f'Running with params:\n{pretty_args}')
cpu_table = CpuTable(args.host, args.http_port)
if args.send:
cpu_table.drop()
cpu_table.create()
df = gen_dataframe(args.seed, args.row_count, args.scale)
if not args.workers:
size = serialize_one(args, df)
else:
if args.workers < 1:
raise ValueError('workers must be >= 1')
size = serialize_workers(args, df)
if args.shell:
import code
code.interact(local=locals())
if args.send:
if not args.workers:
send_one(args, df, size)
else:
send_workers(args, df, size)
cpu_table.block_until_rowcount(
args.row_count, timeout=args.validation_query_timeout)
else:
print('Not sending. Use --send to send to server.')