@@ -90,8 +90,9 @@ def Face2StepModel(pointsN, eyeSize, latentSize, embeddingsSize):
90
90
91
91
def Step2LatentModel (latentSize , embeddingsSize ):
92
92
latents = L .Input ((None , latentSize ))
93
- embeddings = L .Input ((None , embeddingsSize ))
93
+ embeddingsInput = L .Input ((None , embeddingsSize ))
94
94
T = L .Input ((None , 1 ))
95
+ embeddings = embeddingsInput [..., :1 ] * 0.0
95
96
96
97
stepsData = latents
97
98
intermediate = {}
@@ -115,14 +116,14 @@ def Step2LatentModel(latentSize, embeddingsSize):
115
116
continue
116
117
# # # # # # # # # # # # # # # # # # # # # # # # # # # # #
117
118
latent = sMLP (sizes = [latentSize ] * 1 , activation = 'relu' )(
118
- L .Concatenate (- 1 )([stepsData , temporal , encodedT , encodedT ])
119
+ L .Concatenate (- 1 )([stepsData , temporal , encodedT , embeddings ])
119
120
)
120
121
latent = CFusingBlock ()([stepsData , latent ])
121
122
return tf .keras .Model (
122
123
inputs = {
123
124
'latent' : latents ,
124
125
'time' : T ,
125
- 'embeddings' : embeddings ,
126
+ 'embeddings' : embeddingsInput ,
126
127
},
127
128
outputs = {
128
129
'latent' : latent ,
@@ -195,9 +196,7 @@ def Face2LatentModel(
195
196
}
196
197
res ['result' ] = IntermediatePredictor (
197
198
shift = 0.0 if diffusion else 0.5 # shift points to the center, if not using diffusion
198
- )(
199
- L .Concatenate (- 1 )([res ['latent' ], emb ])
200
- )
199
+ )(res ['latent' ])
201
200
202
201
if diffusion :
203
202
inputs ['diffusionT' ] = diffusionT
0 commit comments