Skip to content

📚这个仓库是在arxiv上收集的有关VLN,VLA, SLAM,Gaussian Splatting,非线性优化等相关论文。每天都会自动更新!issue区域是最新10篇论文

Notifications You must be signed in to change notification settings

luohongk/Awesome-Localization-And-3D-Reconstruction-From-Arxiv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Daily Papers

The project automatically fetches the latest papers from arXiv based on keywords.

The subheadings in the README file represent the search keywords.

Only the most recent articles for each keyword are retained, up to a maximum of 100 papers.

You can click the 'Watch' button to receive daily email notifications.

Last update: 2025-07-21

Vision and Language Navigation

Title Date Abstract Comment
Rethinking the Embodied Gap in Vision-and-Language Navigation: A Holistic Study of Physical and Visual Disparities 2025-07-17
Show

Recent Vision-and-Language Navigation (VLN) advancements are promising, but their idealized assumptions about robot movement and control fail to reflect physically embodied deployment challenges. To bridge this gap, we introduce VLN-PE, a physically realistic VLN platform supporting humanoid, quadruped, and wheeled robots. For the first time, we systematically evaluate several ego-centric VLN methods in physical robotic settings across different technical pipelines, including classification models for single-step discrete action prediction, a diffusion model for dense waypoint prediction, and a train-free, map-based large language model (LLM) integrated with path planning. Our results reveal significant performance degradation due to limited robot observation space, environmental lighting variations, and physical challenges like collisions and falls. This also exposes locomotion constraints for legged robots in complex environments. VLN-PE is highly extensible, allowing seamless integration of new scenes beyond MP3D, thereby enabling more comprehensive VLN evaluation. Despite the weak generalization of current models in physical deployment, VLN-PE provides a new pathway for improving cross-embodiment's overall adaptability. We hope our findings and tools inspire the community to rethink VLN limitations and advance robust, practical VLN models. The code is available at https://crystalsixone.github.io/vln_pe.github.io/.

Accep...

Accepted by ICCV 2025

MapNav: A Novel Memory Representation via Annotated Semantic Maps for Vision-and-Language Navigation 2025-07-10
Show

Vision-and-language navigation (VLN) is a key task in Embodied AI, requiring agents to navigate diverse and unseen environments while following natural language instructions. Traditional approaches rely heavily on historical observations as spatio-temporal contexts for decision making, leading to significant storage and computational overhead. In this paper, we introduce MapNav, a novel end-to-end VLN model that leverages Annotated Semantic Map (ASM) to replace historical frames. Specifically, our approach constructs a top-down semantic map at the start of each episode and update it at each timestep, allowing for precise object mapping and structured navigation information. Then, we enhance this map with explicit textual labels for key regions, transforming abstract semantics into clear navigation cues and generate our ASM. MapNav agent using the constructed ASM as input, and use the powerful end-to-end capabilities of VLM to empower VLN. Extensive experiments demonstrate that MapNav achieves state-of-the-art (SOTA) performance in both simulated and real-world environments, validating the effectiveness of our method. Moreover, we will release our ASM generation source code and dataset to ensure reproducibility, contributing valuable resources to the field. We believe that our proposed MapNav can be used as a new memory representation method in VLN, paving the way for future research in this field.

SkyVLN: Vision-and-Language Navigation and NMPC Control for UAVs in Urban Environments 2025-07-09
Show

Unmanned Aerial Vehicles (UAVs) have emerged as versatile tools across various sectors, driven by their mobility and adaptability. This paper introduces SkyVLN, a novel framework integrating vision-and-language navigation (VLN) with Nonlinear Model Predictive Control (NMPC) to enhance UAV autonomy in complex urban environments. Unlike traditional navigation methods, SkyVLN leverages Large Language Models (LLMs) to interpret natural language instructions and visual observations, enabling UAVs to navigate through dynamic 3D spaces with improved accuracy and robustness. We present a multimodal navigation agent equipped with a fine-grained spatial verbalizer and a history path memory mechanism. These components allow the UAV to disambiguate spatial contexts, handle ambiguous instructions, and backtrack when necessary. The framework also incorporates an NMPC module for dynamic obstacle avoidance, ensuring precise trajectory tracking and collision prevention. To validate our approach, we developed a high-fidelity 3D urban simulation environment using AirSim, featuring realistic imagery and dynamic urban elements. Extensive experiments demonstrate that SkyVLN significantly improves navigation success rates and efficiency, particularly in new and unseen environments.

8 pag...

8 pages, 9 figures, has been accepted by IROS 2025

StreamVLN: Streaming Vision-and-Language Navigation via SlowFast Context Modeling 2025-07-07
Show

Vision-and-Language Navigation (VLN) in real-world settings requires agents to process continuous visual streams and generate actions with low latency grounded in language instructions. While Video-based Large Language Models (Video-LLMs) have driven recent progress, current VLN methods based on Video-LLM often face trade-offs among fine-grained visual understanding, long-term context modeling and computational efficiency. We introduce StreamVLN, a streaming VLN framework that employs a hybrid slow-fast context modeling strategy to support multi-modal reasoning over interleaved vision, language and action inputs. The fast-streaming dialogue context facilitates responsive action generation through a sliding-window of active dialogues, while the slow-updating memory context compresses historical visual states using a 3D-aware token pruning strategy. With this slow-fast design, StreamVLN achieves coherent multi-turn dialogue through efficient KV cache reuse, supporting long video streams with bounded context size and inference cost. Experiments on VLN-CE benchmarks demonstrate state-of-the-art performance with stable low latency, ensuring robustness and efficiency in real-world deployment. The project page is: \href{https://streamvln.github.io/}{https://streamvln.github.io/}.

"Hi AirStar, Guide Me to the Badminton Court." 2025-07-06
Show

Unmanned Aerial Vehicles, operating in environments with relatively few obstacles, offer high maneuverability and full three-dimensional mobility. This allows them to rapidly approach objects and perform a wide range of tasks often challenging for ground robots, making them ideal for exploration, inspection, aerial imaging, and everyday assistance. In this paper, we introduce AirStar, a UAV-centric embodied platform that turns a UAV into an intelligent aerial assistant: a large language model acts as the cognitive core for environmental understanding, contextual reasoning, and task planning. AirStar accepts natural interaction through voice commands and gestures, removing the need for a remote controller and significantly broadening its user base. It combines geospatial knowledge-driven long-distance navigation with contextual reasoning for fine-grained short-range control, resulting in an efficient and accurate vision-and-language navigation (VLN) capability.Furthermore, the system also offers built-in capabilities such as cross-modal question answering, intelligent filming, and target tracking. With a highly extensible framework, it supports seamless integration of new functionalities, paving the way toward a general-purpose, instruction-driven intelligent UAV agent. The supplementary PPT is available at \href{https://buaa-colalab.github.io/airstar.github.io}{https://buaa-colalab.github.io/airstar.github.io}.

Aerial Vision-and-Language Navigation via Semantic-Topo-Metric Representation Guided LLM Reasoning 2025-07-03
Show

Aerial Vision-and-Language Navigation (VLN) is a novel task enabling Unmanned Aerial Vehicles (UAVs) to navigate in outdoor environments through natural language instructions and visual cues. It remains challenging due to the complex spatial relationships in outdoor aerial scenes. In this paper, we propose an end-to-end zero-shot framework for aerial VLN tasks, where the large language model (LLM) is introduced as our agent for action prediction. Specifically, we develop a novel Semantic-Topo-Metric Representation (STMR) to enhance the spatial reasoning ability of LLMs. This is achieved by extracting and projecting instruction-related semantic masks of landmarks into a top-down map that contains the location information of surrounding landmarks. Further, this map is transformed into a matrix representation with distance metrics as the text prompt to the LLM, for action prediction according to the instruction. Experiments conducted in real and simulation environments have successfully proved the effectiveness and robustness of our method, achieving 15.9% and 12.5% improvements (absolute) in Oracle Success Rate (OSR) on AerialVLN-S dataset.

NavMorph: A Self-Evolving World Model for Vision-and-Language Navigation in Continuous Environments 2025-06-30
Show

Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to execute sequential navigation actions in complex environments guided by natural language instructions. Current approaches often struggle with generalizing to novel environments and adapting to ongoing changes during navigation. Inspired by human cognition, we present NavMorph, a self-evolving world model framework that enhances environmental understanding and decision-making in VLN-CE tasks. NavMorph employs compact latent representations to model environmental dynamics, equipping agents with foresight for adaptive planning and policy refinement. By integrating a novel Contextual Evolution Memory, NavMorph leverages scene-contextual information to support effective navigation while maintaining online adaptability. Extensive experiments demonstrate that our method achieves notable performance improvements on popular VLN-CE benchmarks. Code is available at \href{https://github.com/Feliciaxyao/NavMorph}{this https URL}.

Accep...

Accepted by ICCV 2025

World-Consistent Data Generation for Vision-and-Language Navigation 2025-06-25
Show

Vision-and-Language Navigation (VLN) is a challenging task that requires an agent to navigate through photorealistic environments following natural-language instructions. One main obstacle existing in VLN is data scarcity, leading to poor generalization performance over unseen environments. Though data argumentation is a promising way for scaling up the dataset, how to generate VLN data both diverse and world-consistent remains problematic. To cope with this issue, we propose the world-consistent data generation (WCGEN), an efficacious data-augmentation framework satisfying both diversity and world-consistency, aimed at enhancing the generalization of agents to novel environments. Roughly, our framework consists of two stages, the trajectory stage which leverages a point-cloud based technique to ensure spatial coherency among viewpoints, and the viewpoint stage which adopts a novel angle synthesis method to guarantee spatial and wraparound consistency within the entire observation. By accurately predicting viewpoint changes with 3D knowledge, our approach maintains the world-consistency during the generation procedure. Experiments on a wide range of datasets verify the effectiveness of our method, demonstrating that our data augmentation strategy enables agents to achieve new state-of-the-art results on all navigation tasks, and is capable of enhancing the VLN agents' generalization ability to unseen environments.

Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System 2025-06-24
Show

Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce \textbf{Mem4Nav}, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.

Cross from Left to Right Brain: Adaptive Text Dreamer for Vision-and-Language Navigation 2025-06-22
Show

Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via \textit{language} form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is \href{https://github.com/zhangpingrui/Adaptive-Text-Dreamer}{here}.

Language and Planning in Robotic Navigation: A Multilingual Evaluation of State-of-the-Art Models 2025-06-17
Show

Large Language Models (LLMs) such as GPT-4, trained on huge amount of datasets spanning multiple domains, exhibit significant reasoning, understanding, and planning capabilities across various tasks. This study presents the first-ever work in Arabic language integration within the Vision-and-Language Navigation (VLN) domain in robotics, an area that has been notably underexplored in existing research. We perform a comprehensive evaluation of state-of-the-art multi-lingual Small Language Models (SLMs), including GPT-4o mini, Llama 3 8B, and Phi-3 medium 14B, alongside the Arabic-centric LLM, Jais. Our approach utilizes the NavGPT framework, a pure LLM-based instruction-following navigation agent, to assess the impact of language on navigation reasoning through zero-shot sequential action prediction using the R2R dataset. Through comprehensive experiments, we demonstrate that our framework is capable of high-level planning for navigation tasks when provided with instructions in both English and Arabic. However, certain models struggled with reasoning and planning in the Arabic language due to inherent limitations in their capabilities, sub-optimal performance, and parsing issues. These findings highlight the importance of enhancing planning and reasoning capabilities in language models for effective navigation, emphasizing this as a key area for further development while also unlocking the potential of Arabic-language models for impactful real-world applications.

This ...

This work has been accepted for presentation at LM4Plan@AAAI'25. For more details, please check: https://llmforplanning.github.io/

SmartWay: Enhanced Waypoint Prediction and Backtracking for Zero-Shot Vision-and-Language Navigation 2025-06-17
Show

Vision-and-Language Navigation (VLN) in continuous environments requires agents to interpret natural language instructions while navigating unconstrained 3D spaces. Existing VLN-CE frameworks rely on a two-stage approach: a waypoint predictor to generate waypoints and a navigator to execute movements. However, current waypoint predictors struggle with spatial awareness, while navigators lack historical reasoning and backtracking capabilities, limiting adaptability. We propose a zero-shot VLN-CE framework integrating an enhanced waypoint predictor with a Multi-modal Large Language Model (MLLM)-based navigator. Our predictor employs a stronger vision encoder, masked cross-attention fusion, and an occupancy-aware loss for better waypoint quality. The navigator incorporates history-aware reasoning and adaptive path planning with backtracking, improving robustness. Experiments on R2R-CE and MP3D benchmarks show our method achieves state-of-the-art (SOTA) performance in zero-shot settings, demonstrating competitive results compared to fully supervised methods. Real-world validation on Turtlebot 4 further highlights its adaptability.

Accep...

Accepted by IROS 2025. Project website: https://sxyxs.github.io/smartway/

Grounded Vision-Language Navigation for UAVs with Open-Vocabulary Goal Understanding 2025-06-12
Show

Vision-and-language navigation (VLN) is a long-standing challenge in autonomous robotics, aiming to empower agents with the ability to follow human instructions while navigating complex environments. Two key bottlenecks remain in this field: generalization to out-of-distribution environments and reliance on fixed discrete action spaces. To address these challenges, we propose Vision-Language Fly (VLFly), a framework tailored for Unmanned Aerial Vehicles (UAVs) to execute language-guided flight. Without the requirement for localization or active ranging sensors, VLFly outputs continuous velocity commands purely from egocentric observations captured by an onboard monocular camera. The VLFly integrates three modules: an instruction encoder based on a large language model (LLM) that reformulates high-level language into structured prompts, a goal retriever powered by a vision-language model (VLM) that matches these prompts to goal images via vision-language similarity, and a waypoint planner that generates executable trajectories for real-time UAV control. VLFly is evaluated across diverse simulation environments without additional fine-tuning and consistently outperforms all baselines. Moreover, real-world VLN tasks in indoor and outdoor environments under direct and indirect instructions demonstrate that VLFly achieves robust open-vocabulary goal understanding and generalized navigation capabilities, even in the presence of abstract language input.

A Navigation Framework Utilizing Vision-Language Models 2025-06-11
Show

Vision-and-Language Navigation (VLN) presents a complex challenge in embodied AI, requiring agents to interpret natural language instructions and navigate through visually rich, unfamiliar environments. Recent advances in large vision-language models (LVLMs), such as CLIP and Flamingo, have significantly improved multimodal understanding but introduced new challenges related to computational cost and real-time deployment. In this project, we propose a modular, plug-and-play navigation framework that decouples vision-language understanding from action planning. By integrating a frozen vision-language model, Qwen2.5-VL-7B-Instruct, with lightweight planning logic, we aim to achieve flexible, fast, and adaptable navigation without extensive model fine-tuning. Our framework leverages prompt engineering, structured history management, and a two-frame visual input strategy to enhance decision-making continuity across navigation steps. We evaluate our system on the Room-to-Room benchmark within the VLN-CE setting using the Matterport3D dataset and Habitat-Lab simulation environment. Although our initial results reveal challenges in generalizing to unseen environments under strict evaluation settings, our modular approach lays a foundation for scalable and efficient navigation systems, highlighting promising directions for future improvement through enhanced environmental priors and expanded multimodal input integration.

TRAVEL: Training-Free Retrieval and Alignment for Vision-and-Language Navigation 2025-06-09
Show

In this work, we propose a modular approach for the Vision-Language Navigation (VLN) task by decomposing the problem into four sub-modules that use state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs) in a zero-shot setting. Given navigation instruction in natural language, we first prompt LLM to extract the landmarks and the order in which they are visited. Assuming the known model of the environment, we retrieve the top-k locations of the last landmark and generate $k$ path hypotheses from the starting location to the last landmark using the shortest path algorithm on the topological map of the environment. Each path hypothesis is represented by a sequence of panoramas. We then use dynamic programming to compute the alignment score between the sequence of panoramas and the sequence of landmark names, which match scores obtained from VLM. Finally, we compute the nDTW metric between the hypothesis that yields the highest alignment score to evaluate the path fidelity. We demonstrate superior performance compared to other approaches that use joint semantic maps like VLMaps on the complex R2R-Habitat instruction dataset and quantify in detail the effect of visual grounding on navigation performance.

Accep...

Accepted to CVPR 2025 Workshop - Foundation Models Meet Embodied Agents

Text-guided Generation of Efficient Personalized Inspection Plans 2025-06-03
Show

We propose a training-free, Vision-Language Model (VLM)-guided approach for efficiently generating trajectories to facilitate target inspection planning based on text descriptions. Unlike existing Vision-and-Language Navigation (VLN) methods designed for general agents in unknown environments, our approach specifically targets the efficient inspection of known scenes, with widespread applications in fields such as medical, marine, and civil engineering. Leveraging VLMs, our method first extracts points of interest (POIs) from the text description, then identifies a set of waypoints from which POIs are both salient and align with the spatial constraints defined in the prompt. Next, we interact with the VLM to iteratively refine the trajectory, preserving the visibility and prominence of the POIs. Further, we solve a Traveling Salesman Problem (TSP) to find the most efficient visitation order that satisfies the order constraint implied in the text description. Finally, we apply trajectory optimization to generate smooth, executable inspection paths for aerial and underwater vehicles. We have evaluated our method across a series of both handcrafted and real-world scanned environments. The results demonstrate that our approach effectively generates inspection planning trajectories that adhere to user instructions.

8 pages, 5 figures
Disrupting Vision-Language Model-Driven Navigation Services via Adversarial Object Fusion 2025-05-29
Show

We present Adversarial Object Fusion (AdvOF), a novel attack framework targeting vision-and-language navigation (VLN) agents in service-oriented environments by generating adversarial 3D objects. While foundational models like Large Language Models (LLMs) and Vision Language Models (VLMs) have enhanced service-oriented navigation systems through improved perception and decision-making, their integration introduces vulnerabilities in mission-critical service workflows. Existing adversarial attacks fail to address service computing contexts, where reliability and quality-of-service (QoS) are paramount. We utilize AdvOF to investigate and explore the impact of adversarial environments on the VLM-based perception module of VLN agents. In particular, AdvOF first precisely aggregates and aligns the victim object positions in both 2D and 3D space, defining and rendering adversarial objects. Then, we collaboratively optimize the adversarial object with regularization between the adversarial and victim object across physical properties and VLM perceptions. Through assigning importance weights to varying views, the optimization is processed stably and multi-viewedly by iterative fusions from local updates and justifications. Our extensive evaluations demonstrate AdvOF can effectively degrade agent performance under adversarial conditions while maintaining minimal interference with normal navigation tasks. This work advances the understanding of service security in VLM-powered navigation systems, providing computational foundations for robust service composition in physical-world deployments.

Under review
HA-VLN: A Benchmark for Human-Aware Navigation in Discrete-Continuous Environments with Dynamic Multi-Human Interactions, Real-World Validation, and an Open Leaderboard 2025-05-27
Show

Vision-and-Language Navigation (VLN) systems often focus on either discrete (panoramic) or continuous (free-motion) paradigms alone, overlooking the complexities of human-populated, dynamic environments. We introduce a unified Human-Aware VLN (HA-VLN) benchmark that merges these paradigms under explicit social-awareness constraints. Our contributions include: 1. A standardized task definition that balances discrete-continuous navigation with personal-space requirements; 2. An enhanced human motion dataset (HAPS 2.0) and upgraded simulators capturing realistic multi-human interactions, outdoor contexts, and refined motion-language alignment; 3. Extensive benchmarking on 16,844 human-centric instructions, revealing how multi-human dynamics and partial observability pose substantial challenges for leading VLN agents; 4. Real-world robot tests validating sim-to-real transfer in crowded indoor spaces; and 5. A public leaderboard supporting transparent comparisons across discrete and continuous tasks. Empirical results show improved navigation success and fewer collisions when social context is integrated, underscoring the need for human-centric design. By releasing all datasets, simulators, agent code, and evaluation tools, we aim to advance safer, more capable, and socially responsible VLN research.

27 pa...

27 pages, 21 figures, with added experiments and analysis, website: https://ha-vln-project.vercel.app/

FlightGPT: Towards Generalizable and Interpretable UAV Vision-and-Language Navigation with Vision-Language Models 2025-05-19
Show

Unmanned Aerial Vehicle (UAV) Vision-and-Language Navigation (VLN) is vital for applications such as disaster response, logistics delivery, and urban inspection. However, existing methods often struggle with insufficient multimodal fusion, weak generalization, and poor interpretability. To address these challenges, we propose FlightGPT, a novel UAV VLN framework built upon Vision-Language Models (VLMs) with powerful multimodal perception capabilities. We design a two-stage training pipeline: first, Supervised Fine-Tuning (SFT) using high-quality demonstrations to improve initialization and structured reasoning; then, Group Relative Policy Optimization (GRPO) algorithm, guided by a composite reward that considers goal accuracy, reasoning quality, and format compliance, to enhance generalization and adaptability. Furthermore, FlightGPT introduces a Chain-of-Thought (CoT)-based reasoning mechanism to improve decision interpretability. Extensive experiments on the city-scale dataset CityNav demonstrate that FlightGPT achieves state-of-the-art performance across all scenarios, with a 9.22% higher success rate than the strongest baseline in unseen environments. Our implementation is publicly available.

BadNAVer: Exploring Jailbreak Attacks On Vision-and-Language Navigation 2025-05-18
Show

Multimodal large language models (MLLMs) have recently gained attention for their generalization and reasoning capabilities in Vision-and-Language Navigation (VLN) tasks, leading to the rise of MLLM-driven navigators. However, MLLMs are vulnerable to jailbreak attacks, where crafted prompts bypass safety mechanisms and trigger undesired outputs. In embodied scenarios, such vulnerabilities pose greater risks: unlike plain text models that generate toxic content, embodied agents may interpret malicious instructions as executable commands, potentially leading to real-world harm. In this paper, we present the first systematic jailbreak attack paradigm targeting MLLM-driven navigator. We propose a three-tiered attack framework and construct malicious queries across four intent categories, concatenated with standard navigation instructions. In the Matterport3D simulator, we evaluate navigation agents powered by five MLLMs and report an average attack success rate over 90%. To test real-world feasibility, we replicate the attack on a physical robot. Our results show that even well-crafted prompts can induce harmful actions and intents in MLLMs, posing risks beyond toxic output and potentially leading to physical harm.

8 pages, 4 figures
VISTA: Generative Visual Imagination for Vision-and-Language Navigation 2025-05-17
Show

Vision-and-Language Navigation (VLN) tasks agents with locating specific objects in unseen environments using natural language instructions and visual cues. Many existing VLN approaches typically follow an 'observe-and-reason' schema, that is, agents observe the environment and decide on the next action to take based on the visual observations of their surroundings. They often face challenges in long-horizon scenarios due to limitations in immediate observation and vision-language modality gaps. To overcome this, we present VISTA, a novel framework that employs an 'imagine-and-align' navigation strategy. Specifically, we leverage the generative prior of pre-trained diffusion models for dynamic visual imagination conditioned on both local observations and high-level language instructions. A Perceptual Alignment Filter module then grounds these goal imaginations against current observations, guiding an interpretable and structured reasoning process for action selection. Experiments show that VISTA sets new state-of-the-art results on Room-to-Room (R2R) and RoboTHOR benchmarks, e.g.,+3.6% increase in Success Rate on R2R. Extensive ablation analysis underscores the value of integrating forward-looking imagination, perceptual alignment, and structured reasoning for robust navigation in long-horizon environments.

13 pages, 5 figures
Dynam3D: Dynamic Layered 3D Tokens Empower VLM for Vision-and-Language Navigation 2025-05-16
Show

Vision-and-Language Navigation (VLN) is a core task where embodied agents leverage their spatial mobility to navigate in 3D environments toward designated destinations based on natural language instructions. Recently, video-language large models (Video-VLMs) with strong generalization capabilities and rich commonsense knowledge have shown remarkable performance when applied to VLN tasks. However, these models still encounter the following challenges when applied to real-world 3D navigation: 1) Insufficient understanding of 3D geometry and spatial semantics; 2) Limited capacity for large-scale exploration and long-term environmental memory; 3) Poor adaptability to dynamic and changing environments.To address these limitations, we propose Dynam3D, a dynamic layered 3D representation model that leverages language-aligned, generalizable, and hierarchical 3D representations as visual input to train 3D-VLM in navigation action prediction. Given posed RGB-D images, our Dynam3D projects 2D CLIP features into 3D space and constructs multi-level 3D patch-instance-zone representations for 3D geometric and semantic understanding with a dynamic and layer-wise update strategy. Our Dynam3D is capable of online encoding and localization of 3D instances, and dynamically updates them in changing environments to provide large-scale exploration and long-term memory capabilities for navigation. By leveraging large-scale 3D-language pretraining and task-specific adaptation, our Dynam3D sets new state-of-the-art performance on VLN benchmarks including R2R-CE, REVERIE-CE and NavRAG-CE under monocular settings. Furthermore, experiments for pre-exploration, lifelong memory, and real-world robot validate the effectiveness of practical deployment.

CityNavAgent: Aerial Vision-and-Language Navigation with Hierarchical Semantic Planning and Global Memory 2025-05-08
Show

Aerial vision-and-language navigation (VLN), requiring drones to interpret natural language instructions and navigate complex urban environments, emerges as a critical embodied AI challenge that bridges human-robot interaction, 3D spatial reasoning, and real-world deployment. Although existing ground VLN agents achieved notable results in indoor and outdoor settings, they struggle in aerial VLN due to the absence of predefined navigation graphs and the exponentially expanding action space in long-horizon exploration. In this work, we propose \textbf{CityNavAgent}, a large language model (LLM)-empowered agent that significantly reduces the navigation complexity for urban aerial VLN. Specifically, we design a hierarchical semantic planning module (HSPM) that decomposes the long-horizon task into sub-goals with different semantic levels. The agent reaches the target progressively by achieving sub-goals with different capacities of the LLM. Additionally, a global memory module storing historical trajectories into a topological graph is developed to simplify navigation for visited targets. Extensive benchmark experiments show that our method achieves state-of-the-art performance with significant improvement. Further experiments demonstrate the effectiveness of different modules of CityNavAgent for aerial VLN in continuous city environments. The code is available at \href{https://github.com/VinceOuti/CityNavAgent}{link}.

MetaScenes: Towards Automated Replica Creation for Real-world 3D Scans 2025-05-05
Show

Embodied AI (EAI) research requires high-quality, diverse 3D scenes to effectively support skill acquisition, sim-to-real transfer, and generalization. Achieving these quality standards, however, necessitates the precise replication of real-world object diversity. Existing datasets demonstrate that this process heavily relies on artist-driven designs, which demand substantial human effort and present significant scalability challenges. To scalably produce realistic and interactive 3D scenes, we first present MetaScenes, a large-scale, simulatable 3D scene dataset constructed from real-world scans, which includes 15366 objects spanning 831 fine-grained categories. Then, we introduce Scan2Sim, a robust multi-modal alignment model, which enables the automated, high-quality replacement of assets, thereby eliminating the reliance on artist-driven designs for scaling 3D scenes. We further propose two benchmarks to evaluate MetaScenes: a detailed scene synthesis task focused on small item layouts for robotic manipulation and a domain transfer task in vision-and-language navigation (VLN) to validate cross-domain transfer. Results confirm MetaScene's potential to enhance EAI by supporting more generalizable agent learning and sim-to-real applications, introducing new possibilities for EAI research. Project website: https://meta-scenes.github.io/.

CVPR 2025
DOPE: Dual Object Perception-Enhancement Network for Vision-and-Language Navigation 2025-04-30
Show

Vision-and-Language Navigation (VLN) is a challenging task where an agent must understand language instructions and navigate unfamiliar environments using visual cues. The agent must accurately locate the target based on visual information from the environment and complete tasks through interaction with the surroundings. Despite significant advancements in this field, two major limitations persist: (1) Many existing methods input complete language instructions directly into multi-layer Transformer networks without fully exploiting the detailed information within the instructions, thereby limiting the agent's language understanding capabilities during task execution; (2) Current approaches often overlook the modeling of object relationships across different modalities, failing to effectively utilize latent clues between objects, which affects the accuracy and robustness of navigation decisions. We propose a Dual Object Perception-Enhancement Network (DOPE) to address these issues to improve navigation performance. First, we design a Text Semantic Extraction (TSE) to extract relatively essential phrases from the text and input them into the Text Object Perception-Augmentation (TOPA) to fully leverage details such as objects and actions within the instructions. Second, we introduce an Image Object Perception-Augmentation (IOPA), which performs additional modeling of object information across different modalities, enabling the model to more effectively utilize latent clues between objects in images and text, enhancing decision-making accuracy. Extensive experiments on the R2R and REVERIE datasets validate the efficacy of the proposed approach.

Main ...

Main paper (10 pages). Accepted for publication by ICMR(International Conference on Multimedia Retrieval) 2025

Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation 2025-04-24
Show

Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.

11 pa...

11 pages, 4 figures, Submitted to ACM MM 2025

ST-Booster: An Iterative SpatioTemporal Perception Booster for Vision-and-Language Navigation in Continuous Environments 2025-04-14
Show

Vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to navigate unknown, continuous spaces based on natural language instructions. Compared to discrete settings, VLN-CE poses two core perception challenges. First, the absence of predefined observation points leads to heterogeneous visual memories and weakened global spatial correlations. Second, cumulative reconstruction errors in three-dimensional scenes introduce structural noise, impairing local feature perception. To address these challenges, this paper proposes ST-Booster, an iterative spatiotemporal booster that enhances navigation performance through multi-granularity perception and instruction-aware reasoning. ST-Booster consists of three key modules -- Hierarchical SpatioTemporal Encoding (HSTE), Multi-Granularity Aligned Fusion (MGAF), and ValueGuided Waypoint Generation (VGWG). HSTE encodes long-term global memory using topological graphs and captures shortterm local details via grid maps. MGAF aligns these dualmap representations with instructions through geometry-aware knowledge fusion. The resulting representations are iteratively refined through pretraining tasks. During reasoning, VGWG generates Guided Attention Heatmaps (GAHs) to explicitly model environment-instruction relevance and optimize waypoint selection. Extensive comparative experiments and performance analyses are conducted, demonstrating that ST-Booster outperforms existing state-of-the-art methods, particularly in complex, disturbance-prone environments.

11 pages, 7 figures
Endowing Embodied Agents with Spatial Reasoning Capabilities for Vision-and-Language Navigation 2025-04-09
Show

Enhancing the spatial perception capabilities of mobile robots is crucial for achieving embodied Vision-and-Language Navigation (VLN). Although significant progress has been made in simulated environments, directly transferring these capabilities to real-world scenarios often results in severe hallucination phenomena, causing robots to lose effective spatial awareness. To address this issue, we propose BrainNav, a bio-inspired spatial cognitive navigation framework inspired by biological spatial cognition theories and cognitive map theory. BrainNav integrates dual-map (coordinate map and topological map) and dual-orientation (relative orientation and absolute orientation) strategies, enabling real-time navigation through dynamic scene capture and path planning. Its five core modules-Hippocampal Memory Hub, Visual Cortex Perception Engine, Parietal Spatial Constructor, Prefrontal Decision Center, and Cerebellar Motion Execution Unit-mimic biological cognitive functions to reduce spatial hallucinations and enhance adaptability. Validated in a zero-shot real-world lab environment using the Limo Pro robot, BrainNav, compatible with GPT-4, outperforms existing State-of-the-Art (SOTA) Vision-and-Language Navigation in Continuous Environments (VLN-CE) methods without fine-tuning.

Agent Journey Beyond RGB: Unveiling Hybrid Semantic-Spatial Environmental Representations for Vision-and-Language Navigation 2025-04-07
Show

Navigating unseen environments based on natural language instructions remains difficult for egocentric agents in Vision-and-Language Navigation (VLN). Existing approaches primarily rely on RGB images for environmental representation, underutilizing latent textual semantic and spatial cues and leaving the modality gap between instructions and scarce environmental representations unresolved. Intuitively, humans inherently ground semantic knowledge within spatial layouts during indoor navigation. Inspired by this, we propose a versatile Semantic Understanding and Spatial Awareness (SUSA) architecture to encourage agents to ground environment from diverse perspectives. SUSA includes a Textual Semantic Understanding (TSU) module, which narrows the modality gap between instructions and environments by generating and associating the descriptions of environmental landmarks in agent's immediate surroundings. Additionally, a Depth-enhanced Spatial Perception (DSP) module incrementally constructs a depth exploration map, enabling a more nuanced comprehension of environmental layouts. Experiments demonstrate that SUSA's hybrid semantic-spatial representations effectively enhance navigation performance, setting new state-of-the-art performance across three VLN benchmarks (REVERIE, R2R, and SOON). The source code will be publicly available.

A tec...

A technical report consisting of 16 pages, 12 figures, 11 tables

COSMO: Combination of Selective Memorization for Low-cost Vision-and-Language Navigation 2025-03-31
Show

Vision-and-Language Navigation (VLN) tasks have gained prominence within artificial intelligence research due to their potential application in fields like home assistants. Many contemporary VLN approaches, while based on transformer architectures, have increasingly incorporated additional components such as external knowledge bases or map information to enhance performance. These additions, while boosting performance, also lead to larger models and increased computational costs. In this paper, to achieve both high performance and low computational costs, we propose a novel architecture with the COmbination of Selective MemOrization (COSMO). Specifically, COSMO integrates state-space modules and transformer modules, and incorporates two VLN-customized selective state space modules: the Round Selective Scan (RSS) and the Cross-modal Selective State Space Module (CS3). RSS facilitates comprehensive inter-modal interactions within a single scan, while the CS3 module adapts the selective state space module into a dual-stream architecture, thereby enhancing the acquisition of cross-modal interactions. Experimental validations on three mainstream VLN benchmarks, REVERIE, R2R, and R2R-CE, not only demonstrate competitive navigation performance of our model but also show a significant reduction in computational costs.

NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning Disentangled Reasoning 2025-03-22
Show

Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions. Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability. However, their predominant use in an offline manner usually suffers from substantial domain gap between the VLN task and the LLM training corpus. This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision, leading to a significant mitigation of the domain gap in a cost-effective manner. Specifically, at each timestep, the LLM is prompted to forecast the navigational chain-of-thought by: 1) acting as a world model to imagine the next observation according to the instruction, 2) selecting the candidate observation that best aligns with the imagination, and 3) determining the action based on the reasoning from the prior steps. Through constructing formalized labels for training, the LLM can learn to generate desired and reasonable chain-of-thought outputs for improving the action decision. Experimental results across various training settings and popular VLN benchmarks (e.g., Room-to-Room (R2R), Room-across-Room (RxR), Room-for-Room (R4R)) show the significant superiority of NavCoT over the direct action prediction variants. Through simple parameter-efficient finetuning, our NavCoT outperforms a recent GPT4-based approach with ~7% relative improvement on the R2R dataset. We believe that NavCoT will help unlock more task-adaptive and scalable LLM-based embodied agents, which are helpful for developing real-world robotics applications. Code is available at https://github.com/expectorlin/NavCoT.

Accep...

Accepted by TPAMI 2025

Do Visual Imaginations Improve Vision-and-Language Navigation Agents? 2025-03-20
Show

Vision-and-Language Navigation (VLN) agents are tasked with navigating an unseen environment using natural language instructions. In this work, we study if visual representations of sub-goals implied by the instructions can serve as navigational cues and lead to increased navigation performance. To synthesize these visual representations or imaginations, we leverage a text-to-image diffusion model on landmark references contained in segmented instructions. These imaginations are provided to VLN agents as an added modality to act as landmark cues and an auxiliary loss is added to explicitly encourage relating these with their corresponding referring expressions. Our findings reveal an increase in success rate (SR) of around 1 point and up to 0.5 points in success scaled by inverse path length (SPL) across agents. These results suggest that the proposed approach reinforces visual understanding compared to relying on language instructions alone. Code and data for our work can be found at https://www.akhilperincherry.com/VLN-Imagine-website/.

RoomTour3D: Geometry-Aware Video-Instruction Tuning for Embodied Navigation 2025-03-19
Show

Vision-and-Language Navigation (VLN) suffers from the limited diversity and scale of training data, primarily constrained by the manual curation of existing simulators. To address this, we introduce RoomTour3D, a video-instruction dataset derived from web-based room tour videos that capture real-world indoor spaces and human walking demonstrations. Unlike existing VLN datasets, RoomTour3D leverages the scale and diversity of online videos to generate open-ended human walking trajectories and open-world navigable instructions. To compensate for the lack of navigation data in online videos, we perform 3D reconstruction and obtain 3D trajectories of walking paths augmented with additional information on the room types, object locations and 3D shape of surrounding scenes. Our dataset includes $\sim$100K open-ended description-enriched trajectories with $\sim$200K instructions, and 17K action-enriched trajectories from 1847 room tour environments. We demonstrate experimentally that RoomTour3D enables significant improvements across multiple VLN tasks including CVDN, SOON, R2R, and REVERIE. Moreover, RoomTour3D facilitates the development of trainable zero-shot VLN agents, showcasing the potential and challenges of advancing towards open-world navigation.

CVPR2025
FlexVLN: Flexible Adaptation for Diverse Vision-and-Language Navigation Tasks 2025-03-18
Show

The aspiration of the Vision-and-Language Navigation (VLN) task has long been to develop an embodied agent with robust adaptability, capable of seamlessly transferring its navigation capabilities across various tasks. Despite remarkable advancements in recent years, most methods necessitate dataset-specific training, thereby lacking the capability to generalize across diverse datasets encompassing distinct types of instructions. Large language models (LLMs) have demonstrated exceptional reasoning and generalization abilities, exhibiting immense potential in robot action planning. In this paper, we propose FlexVLN, an innovative hierarchical approach to VLN that integrates the fundamental navigation ability of a supervised-learning-based Instruction Follower with the robust generalization ability of the LLM Planner, enabling effective generalization across diverse VLN datasets. Moreover, a verification mechanism and a multi-model integration mechanism are proposed to mitigate potential hallucinations by the LLM Planner and enhance execution accuracy of the Instruction Follower. We take REVERIE, SOON, and CVDN-target as out-of-domain datasets for assessing generalization ability. The generalization performance of FlexVLN surpasses that of all the previous methods to a large extent.

Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling 2025-03-17
Show

Vision-and-Language Navigation (VLN) is a task where agents must decide how to move through a 3D environment to reach a goal by grounding natural language instructions to the visual surroundings. One of the problems of the VLN task is data scarcity since it is difficult to collect enough navigation paths with human-annotated instructions for interactive environments. In this paper, we explore the use of counterfactual thinking as a human-inspired data augmentation method that results in robust models. Counterfactual thinking is a concept that describes the human propensity to create possible alternatives to life events that have already occurred. We propose an adversarial-driven counterfactual reasoning model that can consider effective conditions instead of low-quality augmented data. In particular, we present a model-agnostic adversarial path sampler (APS) that learns to sample challenging paths that force the navigator to improve based on the navigation performance. APS also serves to do pre-exploration of unseen environments to strengthen the model's ability to generalize. We evaluate the influence of APS on the performance of different VLN baseline models using the room-to-room dataset (R2R). The results show that the adversarial training process with our proposed APS benefits VLN models under both seen and unseen environments. And the pre-exploration process can further gain additional improvements under unseen environments.

ECCV'20 (Spotlight)
UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation 2025-03-16
Show

Vision-and-Language Navigation (VLN), where an agent follows instructions to reach a target destination, has recently seen significant advancements. In contrast to navigation in discrete environments with predefined trajectories, VLN in Continuous Environments (VLN-CE) presents greater challenges, as the agent is free to navigate any unobstructed location and is more vulnerable to visual occlusions or blind spots. Recent approaches have attempted to address this by imagining future environments, either through predicted future visual images or semantic features, rather than relying solely on current observations. However, these RGB-based and feature-based methods lack intuitive appearance-level information or high-level semantic complexity crucial for effective navigation. To overcome these limitations, we introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN, which enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features. UnitedVLN employs two key schemes: search-then-query sampling and separate-then-united rendering, which facilitate efficient exploitation of neural primitives, helping to integrate both appearance and semantic information for more robust navigation. Extensive experiments demonstrate that UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.

Aerial Vision-and-Language Navigation with Grid-based View Selection and Map Construction 2025-03-14
Show

Aerial Vision-and-Language Navigation (Aerial VLN) aims to obtain an unmanned aerial vehicle agent to navigate aerial 3D environments following human instruction. Compared to ground-based VLN, aerial VLN requires the agent to decide the next action in both horizontal and vertical directions based on the first-person view observations. Previous methods struggle to perform well due to the longer navigation path, more complicated 3D scenes, and the neglect of the interplay between vertical and horizontal actions. In this paper, we propose a novel grid-based view selection framework that formulates aerial VLN action prediction as a grid-based view selection task, incorporating vertical action prediction in a manner that accounts for the coupling with horizontal actions, thereby enabling effective altitude adjustments. We further introduce a grid-based bird's eye view map for aerial space to fuse the visual information in the navigation history, provide contextual scene information, and mitigate the impact of obstacles. Finally, a cross-modal transformer is adopted to explicitly align the long navigation history with the instruction. We demonstrate the superiority of our method in extensive experiments.

Under Submission
Observation-Graph Interaction and Key-Detail Guidance for Vision and Language Navigation 2025-03-14
Show

Vision and Language Navigation (VLN) requires an agent to navigate through environments following natural language instructions. However, existing methods often struggle with effectively integrating visual observations and instruction details during navigation, leading to suboptimal path planning and limited success rates. In this paper, we propose OIKG (Observation-graph Interaction and Key-detail Guidance), a novel framework that addresses these limitations through two key components: (1) an observation-graph interaction module that decouples angular and visual information while strengthening edge representations in the navigation space, and (2) a key-detail guidance module that dynamically extracts and utilizes fine-grained location and object information from instructions. By enabling more precise cross-modal alignment and dynamic instruction interpretation, our approach significantly improves the agent's ability to follow complex navigation instructions. Extensive experiments on the R2R and RxR datasets demonstrate that OIKG achieves state-of-the-art performance across multiple evaluation metrics, validating the effectiveness of our method in enhancing navigation precision through better observation-instruction alignment.

8 pages, 4 figures
PanoGen++: Domain-Adapted Text-Guided Panoramic Environment Generation for Vision-and-Language Navigation 2025-03-13
Show

Vision-and-language navigation (VLN) tasks require agents to navigate three-dimensional environments guided by natural language instructions, offering substantial potential for diverse applications. However, the scarcity of training data impedes progress in this field. This paper introduces PanoGen++, a novel framework that addresses this limitation by generating varied and pertinent panoramic environments for VLN tasks. PanoGen++ incorporates pre-trained diffusion models with domain-specific fine-tuning, employing parameter-efficient techniques such as low-rank adaptation to minimize computational costs. We investigate two settings for environment generation: masked image inpainting and recursive image outpainting. The former maximizes novel environment creation by inpainting masked regions based on textual descriptions, while the latter facilitates agents' learning of spatial relationships within panoramas. Empirical evaluations on room-to-room (R2R), room-for-room (R4R), and cooperative vision-and-dialog navigation (CVDN) datasets reveal significant performance enhancements: a 2.44% increase in success rate on the R2R test leaderboard, a 0.63% improvement on the R4R validation unseen set, and a 0.75-meter enhancement in goal progress on the CVDN validation unseen set. PanoGen++ augments the diversity and relevance of training environments, resulting in improved generalization and efficacy in VLN tasks.

This ...

This paper was accepted by Neural Networks

NavRAG: Generating User Demand Instructions for Embodied Navigation through Retrieval-Augmented LLM 2025-03-07
Show

Vision-and-Language Navigation (VLN) is an essential skill for embodied agents, allowing them to navigate in 3D environments following natural language instructions. High-performance navigation models require a large amount of training data, the high cost of manually annotating data has seriously hindered this field. Therefore, some previous methods translate trajectory videos into step-by-step instructions for expanding data, but such instructions do not match well with users' communication styles that briefly describe destinations or state specific needs. Moreover, local navigation trajectories overlook global context and high-level task planning. To address these issues, we propose NavRAG, a retrieval-augmented generation (RAG) framework that generates user demand instructions for VLN. NavRAG leverages LLM to build a hierarchical scene description tree for 3D scene understanding from global layout to local details, then simulates various user roles with specific demands to retrieve from the scene tree, generating diverse instructions with LLM. We annotate over 2 million navigation instructions across 861 scenes and evaluate the data quality and navigation performance of trained models.

Ground-level Viewpoint Vision-and-Language Navigation in Continuous Environments 2025-02-26
Show

Vision-and-Language Navigation (VLN) empowers agents to associate time-sequenced visual observations with corresponding instructions to make sequential decisions. However, generalization remains a persistent challenge, particularly when dealing with visually diverse scenes or transitioning from simulated environments to real-world deployment. In this paper, we address the mismatch between human-centric instructions and quadruped robots with a low-height field of view, proposing a Ground-level Viewpoint Navigation (GVNav) approach to mitigate this issue. This work represents the first attempt to highlight the generalization gap in VLN across varying heights of visual observation in realistic robot deployments. Our approach leverages weighted historical observations as enriched spatiotemporal contexts for instruction following, effectively managing feature collisions within cells by assigning appropriate weights to identical features across different viewpoints. This enables low-height robots to overcome challenges such as visual obstructions and perceptual mismatches. Additionally, we transfer the connectivity graph from the HM3D and Gibson datasets as an extra resource to enhance spatial priors and a more comprehensive representation of real-world scenarios, leading to improved performance and generalizability of the waypoint predictor in real-world environments. Extensive experiments demonstrate that our Ground-level Viewpoint Navigation (GVnav) approach significantly improves performance in both simulated environments and real-world deployments with quadruped robots.

Accep...

Accepted by ICRA 2025

NaVILA: Legged Robot Vision-Language-Action Model for Navigation 2025-02-17
Show

This paper proposes to solve the problem of Vision-and-Language Navigation with legged robots, which not only provides a flexible way for humans to command but also allows the robot to navigate through more challenging and cluttered scenes. However, it is non-trivial to translate human language instructions all the way to low-level leg joint actions. We propose NaVILA, a 2-level framework that unifies a Vision-Language-Action model (VLA) with locomotion skills. Instead of directly predicting low-level actions from VLA, NaVILA first generates mid-level actions with spatial information in the form of language, (e.g., "moving forward 75cm"), which serves as an input for a visual locomotion RL policy for execution. NaVILA substantially improves previous approaches on existing benchmarks. The same advantages are demonstrated in our newly developed benchmarks with IsaacLab, featuring more realistic scenes, low-level controls, and real-world robot experiments. We show more results at https://navila-bot.github.io/

Websi...

Website: https://navila-bot.github.io/

Open-Nav: Exploring Zero-Shot Vision-and-Language Navigation in Continuous Environment with Open-Source LLMs 2025-02-11
Show

Vision-and-Language Navigation (VLN) tasks require an agent to follow textual instructions to navigate through 3D environments. Traditional approaches use supervised learning methods, relying heavily on domain-specific datasets to train VLN models. Recent methods try to utilize closed-source large language models (LLMs) like GPT-4 to solve VLN tasks in zero-shot manners, but face challenges related to expensive token costs and potential data breaches in real-world applications. In this work, we introduce Open-Nav, a novel study that explores open-source LLMs for zero-shot VLN in the continuous environment. Open-Nav employs a spatial-temporal chain-of-thought (CoT) reasoning approach to break down tasks into instruction comprehension, progress estimation, and decision-making. It enhances scene perceptions with fine-grained object and spatial knowledge to improve LLM's reasoning in navigation. Our extensive experiments in both simulated and real-world environments demonstrate that Open-Nav achieves competitive performance compared to using closed-source LLMs.

Accep...

Accepted by ICRA 2025

General Scene Adaptation for Vision-and-Language Navigation 2025-01-29
Show

Vision-and-Language Navigation (VLN) tasks mainly evaluate agents based on one-time execution of individual instructions across multiple environments, aiming to develop agents capable of functioning in any environment in a zero-shot manner. However, real-world navigation robots often operate in persistent environments with relatively consistent physical layouts, visual observations, and language styles from instructors. Such a gap in the task setting presents an opportunity to improve VLN agents by incorporating continuous adaptation to specific environments. To better reflect these real-world conditions, we introduce GSA-VLN, a novel task requiring agents to execute navigation instructions within a specific scene and simultaneously adapt to it for improved performance over time. To evaluate the proposed task, one has to address two challenges in existing VLN datasets: the lack of OOD data, and the limited number and style diversity of instructions for each scene. Therefore, we propose a new dataset, GSA-R2R, which significantly expands the diversity and quantity of environments and instructions for the R2R dataset to evaluate agent adaptability in both ID and OOD contexts. Furthermore, we design a three-stage instruction orchestration pipeline that leverages LLMs to refine speaker-generated instructions and apply role-playing techniques to rephrase instructions into different speaking styles. This is motivated by the observation that each individual user often has consistent signatures or preferences in their instructions. We conducted extensive experiments on GSA-R2R to thoroughly evaluate our dataset and benchmark various methods. Based on our findings, we propose a novel method, GR-DUET, which incorporates memory-based navigation graphs with an environment-specific training strategy, achieving state-of-the-art results on all GSA-R2R splits.

ICLR 2025
FLAME: Learning to Navigate with Multimodal LLM in Urban Environments 2025-01-21
Show

Large Language Models (LLMs) have demonstrated potential in Vision-and-Language Navigation (VLN) tasks, yet current applications face challenges. While LLMs excel in general conversation scenarios, they struggle with specialized navigation tasks, yielding suboptimal performance compared to specialized VLN models. We introduce FLAME (FLAMingo-Architected Embodied Agent), a novel Multimodal LLM-based agent and architecture designed for urban VLN tasks that efficiently handles multiple observations. Our approach implements a three-phase tuning technique for effective adaptation to navigation tasks, including single perception tuning for street view description, multiple perception tuning for route summarization, and end-to-end training on VLN datasets. The augmented datasets are synthesized automatically. Experimental results demonstrate FLAME's superiority over existing methods, surpassing state-of-the-art methods by a 7.3% increase in task completion on Touchdown dataset. This work showcases the potential of Multimodal LLMs (MLLMs) in complex navigation tasks, representing an advancement towards applications of MLLMs in the field of embodied intelligence.

Accep...

Accepted to AAAI 2025 (Oral)

Mind the Error! Detection and Localization of Instruction Errors in Vision-and-Language Navigation 2025-01-15
Show

Vision-and-Language Navigation in Continuous Environments (VLN-CE) is one of the most intuitive yet challenging embodied AI tasks. Agents are tasked to navigate towards a target goal by executing a set of low-level actions, following a series of natural language instructions. All VLN-CE methods in the literature assume that language instructions are exact. However, in practice, instructions given by humans can contain errors when describing a spatial environment due to inaccurate memory or confusion. Current VLN-CE benchmarks do not address this scenario, making the state-of-the-art methods in VLN-CE fragile in the presence of erroneous instructions from human users. For the first time, we propose a novel benchmark dataset that introduces various types of instruction errors considering potential human causes. This benchmark provides valuable insight into the robustness of VLN systems in continuous environments. We observe a noticeable performance drop (up to -25%) in Success Rate when evaluating the state-of-the-art VLN-CE methods on our benchmark. Moreover, we formally define the task of Instruction Error Detection and Localization, and establish an evaluation protocol on top of our benchmark dataset. We also propose an effective method, based on a cross-modal transformer architecture, that achieves the best performance in error detection and localization, compared to baselines. Surprisingly, our proposed method has revealed errors in the validation set of the two commonly used datasets for VLN-CE, i.e., R2R-CE and RxR-CE, demonstrating the utility of our technique in other tasks. Code and dataset available at https://intelligolabs.github.io/R2RIE-CE

3 fig...

3 figures, 8 pages. Accepted at IROS'24

Vision-and-Language Navigation Today and Tomorrow: A Survey in the Era of Foundation Models 2024-12-29
Show

Vision-and-Language Navigation (VLN) has gained increasing attention over recent years and many approaches have emerged to advance their development. The remarkable achievements of foundation models have shaped the challenges and proposed methods for VLN research. In this survey, we provide a top-down review that adopts a principled framework for embodied planning and reasoning, and emphasizes the current methods and future opportunities leveraging foundation models to address VLN challenges. We hope our in-depth discussions could provide valuable resources and insights: on one hand, to milestone the progress and explore opportunities and potential roles for foundation models in this field, and on the other, to organize different challenges and solutions in VLN to foundation model researchers.

Autho...

Authors contributed equally to this work, and supervisors contributed equal advising to this work; GitHub repository: https://github.com/zhangyuejoslin/VLN-Survey-with-Foundation-Models

Planning from Imagination: Episodic Simulation and Episodic Memory for Vision-and-Language Navigation 2024-12-25
Show

Humans navigate unfamiliar environments using episodic simulation and episodic memory, which facilitate a deeper understanding of the complex relationships between environments and objects. Developing an imaginative memory system inspired by human mechanisms can enhance the navigation performance of embodied agents in unseen environments. However, existing Vision-and-Language Navigation (VLN) agents lack a memory mechanism of this kind. To address this, we propose a novel architecture that equips agents with a reality-imagination hybrid memory system. This system enables agents to maintain and expand their memory through both imaginative mechanisms and navigation actions. Additionally, we design tailored pre-training tasks to develop the agent's imaginative capabilities. Our agent can imagine high-fidelity RGB images for future scenes, achieving state-of-the-art result in Success rate weighted by Path Length (SPL).

Continual Vision-and-Language Navigation 2024-12-21
Show

In developing Vision-and-Language Navigation (VLN) agents that navigate to a destination using natural language instructions and visual cues, current studies largely assume a \textit{train-once-deploy-once strategy}. We argue that this kind of strategy is less realistic, as deployed VLN agents are expected to encounter novel environments continuously through their lifetime. To facilitate more realistic setting for VLN agents, we propose Continual Vision-and-Language Navigation (CVLN) paradigm for agents to continually learn and adapt to changing environments. In CVLN, the agents are trained and evaluated incrementally across multiple \textit{scene domains} (i.e., environments). We present two CVLN learning setups to consider diverse forms of natural language instructions: Initial-instruction based CVLN, focused on navigation via initial-instruction interpretation, and dialogue-based CVLN, designed for navigation through dialogue with other agents. We introduce two simple yet effective baseline methods, tailored to the sequential decision-making needs of CVLN: Perplexity Replay (PerpR) and Episodic Self-Replay (ESR), both employing a rehearsal mechanism. PerpR selects replay episodes based on episode difficulty, while ESR stores and revisits action logits from individual episode steps during training to refine learning. Experimental results indicate that while existing continual learning methods are insufficient for CVLN, PerpR and ESR outperform the comparison methods by effectively utilizing replay memory.

NAVCON: A Cognitively Inspired and Linguistically Grounded Corpus for Vision and Language Navigation 2024-12-18
Show

We present NAVCON, a large-scale annotated Vision-Language Navigation (VLN) corpus built on top of two popular datasets (R2R and RxR). The paper introduces four core, cognitively motivated and linguistically grounded, navigation concepts and an algorithm for generating large-scale silver annotations of naturally occurring linguistic realizations of these concepts in navigation instructions. We pair the annotated instructions with video clips of an agent acting on these instructions. NAVCON contains 236, 316 concept annotations for approximately 30, 0000 instructions and 2.7 million aligned images (from approximately 19, 000 instructions) showing what the agent sees when executing an instruction. To our knowledge, this is the first comprehensive resource of navigation concepts. We evaluated the quality of the silver annotations by conducting human evaluation studies on NAVCON samples. As further validation of the quality and usefulness of the resource, we trained a model for detecting navigation concepts and their linguistic realizations in unseen instructions. Additionally, we show that few-shot learning with GPT-4o performs well on this task using large-scale silver annotations of NAVCON.

Hijacking Vision-and-Language Navigation Agents with Adversarial Environmental Attacks 2024-12-03
Show

Assistive embodied agents that can be instructed in natural language to perform tasks in open-world environments have the potential to significantly impact labor tasks like manufacturing or in-home care -- benefiting the lives of those who come to depend on them. In this work, we consider how this benefit might be hijacked by local modifications in the appearance of the agent's operating environment. Specifically, we take the popular Vision-and-Language Navigation (VLN) task as a representative setting and develop a whitebox adversarial attack that optimizes a 3D attack object's appearance to induce desired behaviors in pretrained VLN agents that observe it in the environment. We demonstrate that the proposed attack can cause VLN agents to ignore their instructions and execute alternative actions after encountering the attack object -- even for instructions and agent paths not considered when optimizing the attack. For these novel settings, we find our attacks can induce early-termination behaviors or divert an agent along an attacker-defined multi-step trajectory. Under both conditions, environmental attacks significantly reduce agent capabilities to successfully follow user instructions.

Accep...

Accepted by WACV 2025

Fine-Grained Alignment in Vision-and-Language Navigation through Bayesian Optimization 2024-11-30
Show

This paper addresses the challenge of fine-grained alignment in Vision-and-Language Navigation (VLN) tasks, where robots navigate realistic 3D environments based on natural language instructions. Current approaches use contrastive learning to align language with visual trajectory sequences. Nevertheless, they encounter difficulties with fine-grained vision negatives. To enhance cross-modal embeddings, we introduce a novel Bayesian Optimization-based adversarial optimization framework for creating fine-grained contrastive vision samples. To validate the proposed methodology, we conduct a series of experiments to assess the effectiveness of the enriched embeddings on fine-grained vision negatives. We conduct experiments on two common VLN benchmarks R2R and REVERIE, experiments on the them demonstrate that these embeddings benefit navigation, and can lead to a promising performance enhancement. Our source code and trained models are available at: https://anonymous.4open.science/r/FGVLN.

g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks 2024-11-26
Show

We introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks. Our g3D-LF processes posed RGB-D images from agents to encode feature fields for: 1) Novel view representation predictions from any position in the 3D scene; 2) Generations of BEV maps centered on the agent; 3) Querying targets using multi-granularity language within the above-mentioned representations. Our representation can be generalized to unseen environments, enabling real-time construction and dynamic updates. By volume rendering latent features along sampled rays and integrating semantic and spatial relationships through multiscale encoders, our g3D-LF produces representations at different scales and perspectives, aligned with multi-granularity language, via multi-level contrastive learning. Furthermore, we prepare a large-scale 3D-language dataset to align the representations of the feature fields with language. Extensive experiments on Vision-and-Language Navigation under both Panorama and Monocular settings, Zero-shot Object Navigation, and Situated Question Answering tasks highlight the significant advantages and effectiveness of our g3D-LF for embodied tasks.

InstruGen: Automatic Instruction Generation for Vision-and-Language Navigation Via Large Multimodal Models 2024-11-18
Show

Recent research on Vision-and-Language Navigation (VLN) indicates that agents suffer from poor generalization in unseen environments due to the lack of realistic training environments and high-quality path-instruction pairs. Most existing methods for constructing realistic navigation scenes have high costs, and the extension of instructions mainly relies on predefined templates or rules, lacking adaptability. To alleviate the issue, we propose InstruGen, a VLN path-instruction pairs generation paradigm. Specifically, we use YouTube house tour videos as realistic navigation scenes and leverage the powerful visual understanding and generation abilities of large multimodal models (LMMs) to automatically generate diverse and high-quality VLN path-instruction pairs. Our method generates navigation instructions with different granularities and achieves fine-grained alignment between instructions and visual observations, which was difficult to achieve with previous methods. Additionally, we design a multi-stage verification mechanism to reduce hallucinations and inconsistency of LMMs. Experimental results demonstrate that agents trained with path-instruction pairs generated by InstruGen achieves state-of-the-art performance on the R2R and RxR benchmarks, particularly in unseen environments. Code is available at https://github.com/yanyu0526/InstruGen.

NavAgent: Multi-scale Urban Street View Fusion For UAV Embodied Vision-and-Language Navigation 2024-11-13
Show

Vision-and-Language Navigation (VLN), as a widely discussed research direction in embodied intelligence, aims to enable embodied agents to navigate in complicated visual environments through natural language commands. Most existing VLN methods focus on indoor ground robot scenarios. However, when applied to UAV VLN in outdoor urban scenes, it faces two significant challenges. First, urban scenes contain numerous objects, which makes it challenging to match fine-grained landmarks in images with complex textual descriptions of these landmarks. Second, overall environmental information encompasses multiple modal dimensions, and the diversity of representations significantly increases the complexity of the encoding process. To address these challenges, we propose NavAgent, the first urban UAV embodied navigation model driven by a large Vision-Language Model. NavAgent undertakes navigation tasks by synthesizing multi-scale environmental information, including topological maps (global), panoramas (medium), and fine-grained landmarks (local). Specifically, we utilize GLIP to build a visual recognizer for landmark capable of identifying and linguisticizing fine-grained landmarks. Subsequently, we develop dynamically growing scene topology map that integrate environmental information and employ Graph Convolutional Networks to encode global environmental data. In addition, to train the visual recognizer for landmark, we develop NavAgent-Landmark2K, the first fine-grained landmark dataset for real urban street scenes. In experiments conducted on the Touchdown and Map2seq datasets, NavAgent outperforms strong baseline models. The code and dataset will be released to the community to facilitate the exploration and development of outdoor VLN.

To Ask or Not to Ask? Detecting Absence of Information in Vision and Language Navigation 2024-11-06
Show

Recent research in Vision Language Navigation (VLN) has overlooked the development of agents' inquisitive abilities, which allow them to ask clarifying questions when instructions are incomplete. This paper addresses how agents can recognize "when" they lack sufficient information, without focusing on "what" is missing, particularly in VLN tasks with vague instructions. Equipping agents with this ability enhances efficiency by reducing potential digressions and seeking timely assistance. The challenge in identifying such uncertain points is balancing between being overly cautious (high recall) and overly confident (high precision). We propose an attention-based instruction-vagueness estimation module that learns associations between instructions and the agent's trajectory. By leveraging instruction-to-path alignment information during training, the module's vagueness estimation performance improves by around 52% in terms of precision-recall balance. In our ablative experiments, we also demonstrate the effectiveness of incorporating this additional instruction-to-path attention network alongside the cross-modal attention networks within the navigator module. Our results show that the attention scores from the instruction-to-path attention network serve as better indicators for estimating vagueness.

Accep...

Accepted at WACV 2025

Human-Aware Vision-and-Language Navigation: Bridging Simulation to Reality with Dynamic Human Interactions 2024-11-02
Show

Vision-and-Language Navigation (VLN) aims to develop embodied agents that navigate based on human instructions. However, current VLN frameworks often rely on static environments and optimal expert supervision, limiting their real-world applicability. To address this, we introduce Human-Aware Vision-and-Language Navigation (HA-VLN), extending traditional VLN by incorporating dynamic human activities and relaxing key assumptions. We propose the Human-Aware 3D (HA3D) simulator, which combines dynamic human activities with the Matterport3D dataset, and the Human-Aware Room-to-Room (HA-R2R) dataset, extending R2R with human activity descriptions. To tackle HA-VLN challenges, we present the Expert-Supervised Cross-Modal (VLN-CM) and Non-Expert-Supervised Decision Transformer (VLN-DT) agents, utilizing cross-modal fusion and diverse training strategies for effective navigation in dynamic human environments. A comprehensive evaluation, including metrics considering human activities, and systematic analysis of HA-VLN's unique challenges, underscores the need for further research to enhance HA-VLN agents' real-world robustness and adaptability. Ultimately, this work provides benchmarks and insights for future research on embodied AI and Sim2Real transfer, paving the way for more realistic and applicable VLN systems in human-populated environments.

Spotl...

Spotlight at NeurIPS 2024 D&B Track. 32 pages, 18 figures, Project Page: https://lpercc.github.io/HA3D_simulator/

Contrast Sets for Evaluating Language-Guided Robot Policies 2024-10-25
Show

Robot evaluations in language-guided, real world settings are time-consuming and often sample only a small space of potential instructions across complex scenes. In this work, we introduce contrast sets for robotics as an approach to make small, but specific, perturbations to otherwise independent, identically distributed (i.i.d.) test instances. We investigate the relationship between experimenter effort to carry out an evaluation and the resulting estimated test performance as well as the insights that can be drawn from performance on perturbed instances. We use the relative performance change of different contrast set perturbations to characterize policies at reduced experimenter effort in both a simulated manipulation task and a physical robot vision-and-language navigation task. We encourage the use of contrast set evaluations as a more informative alternative to small scale, i.i.d. demonstrations on physical robots, and as a scalable alternative to industry-scale real world evaluations.

Accep...

Accepted to CoRL 2024

Sim-to-Real Transfer via 3D Feature Fields for Vision-and-Language Navigation 2024-10-14
Show

Vision-and-language navigation (VLN) enables the agent to navigate to a remote location in 3D environments following the natural language instruction. In this field, the agent is usually trained and evaluated in the navigation simulators, lacking effective approaches for sim-to-real transfer. The VLN agents with only a monocular camera exhibit extremely limited performance, while the mainstream VLN models trained with panoramic observation, perform better but are difficult to deploy on most monocular robots. For this case, we propose a sim-to-real transfer approach to endow the monocular robots with panoramic traversability perception and panoramic semantic understanding, thus smoothly transferring the high-performance panoramic VLN models to the common monocular robots. In this work, the semantic traversable map is proposed to predict agent-centric navigable waypoints, and the novel view representations of these navigable waypoints are predicted through the 3D feature fields. These methods broaden the limited field of view of the monocular robots and significantly improve navigation performance in the real world. Our VLN system outperforms previous SOTA monocular VLN methods in R2R-CE and RxR-CE benchmarks within the simulation environments and is also validated in real-world environments, providing a practical and high-performance solution for real-world VLN.

Accep...

Accepted by CoRL 2024. The code is available at https://github.com/MrZihan/Sim2Real-VLN-3DFF

Zero-Shot Vision-and-Language Navigation with Collision Mitigation in Continuous Environment 2024-10-07
Show

We propose the zero-shot Vision-and-Language Navigation with Collision Mitigation (VLN-CM), which takes these considerations. VLN-CM is composed of four modules and predicts the direction and distance of the next movement at each step. We utilize large foundation models for each modules. To select the direction, we use the Attention Spot Predictor (ASP), View Selector (VS), and Progress Monitor (PM). The ASP employs a Large Language Model (e.g. ChatGPT) to split navigation instructions into attention spots, which are objects or scenes at the location to move to (e.g. a yellow door). The VS selects from panorama images provided at 30-degree intervals the one that includes the attention spot, using CLIP similarity. We then choose the angle of the selected image as the direction to move in. The PM uses a rule-based approach to decide which attention spot to focus on next, among multiple spots derived from the instructions. If the similarity between the current attention spot and the visual observations decreases consecutively at each step, the PM determines that the agent has passed the current spot and moves on to the next one. For selecting the distance to move, we employed the Open Map Predictor (OMP). The OMP uses panorama depth information to predict an occupancy mask. We then selected a collision-free distance in the predicted direction based on the occupancy mask. We evaluated our method using the validation data of VLN-CE. Our approach showed better performance than several baseline methods, and the OPM was effective in mitigating collisions for the agent.

Hierarchical Spatial Proximity Reasoning for Vision-and-Language Navigation 2024-10-06
Show

Most Vision-and-Language Navigation (VLN) algorithms are prone to making inaccurate decisions due to their lack of visual common sense and limited reasoning capabilities. To address this issue, we propose a Hierarchical Spatial Proximity Reasoning (HSPR) method. First, we introduce a scene understanding auxiliary task to help the agent build a knowledge base of hierarchical spatial proximity. This task utilizes panoramic views and object features to identify types of nodes and uncover the adjacency relationships between nodes, objects, and between nodes and objects. Second, we propose a multi-step reasoning navigation algorithm based on the hierarchical spatial proximity knowledge base, which continuously plans feasible paths to enhance exploration efficiency. Third, we introduce a residual fusion method to improve navigation decision accuracy. Finally, we validate our approach with experiments on publicly available datasets including REVERIE, SOON, R2R, and R4R. Our code is available at https://github.com/iCityLab/HSPR

CityNav: Language-Goal Aerial Navigation Dataset with Geographic Information 2024-10-05
Show

Vision-and-language navigation (VLN) aims to guide autonomous agents through real-world environments by integrating visual and linguistic cues. Despite notable advancements in ground-level navigation, the exploration of aerial navigation using these modalities remains limited. This gap primarily arises from a lack of suitable resources for real-world, city-scale aerial navigation studies. To remedy this gap, we introduce CityNav, a novel dataset explicitly designed for language-guided aerial navigation in photorealistic 3D environments of real cities. CityNav comprises 32k natural language descriptions paired with human demonstration trajectories, collected via a newly developed web-based 3D simulator. Each description identifies a navigation goal, utilizing the names and locations of landmarks within actual cities. As an initial step toward addressing this challenge, we provide baseline models of navigation agents that incorporate an internal 2D spatial map representing landmarks referenced in the descriptions. We have benchmarked the latest aerial navigation methods alongside our proposed baseline model on the CityNav dataset. The findings are revealing: (i) our aerial agent model trained on human demonstration trajectories, outperform those trained on shortest path trajectories by a large margin; (ii) incorporating 2D spatial map information markedly and robustly enhances navigation performance at a city scale; (iii) despite the use of map information, our challenging CityNav dataset reveals a persistent performance gap between our baseline models and human performance. To foster further research in aerial VLN, we have made the dataset and code available at https://water-cookie.github.io/city-nav-proj/

The f...

The first two authors are equally contributed

MiniVLN: Efficient Vision-and-Language Navigation by Progressive Knowledge Distillation 2024-09-27
Show

In recent years, Embodied Artificial Intelligence (Embodied AI) has advanced rapidly, yet the increasing size of models conflicts with the limited computational capabilities of Embodied AI platforms. To address this challenge, we aim to achieve both high model performance and practical deployability. Specifically, we focus on Vision-and-Language Navigation (VLN), a core task in Embodied AI. This paper introduces a two-stage knowledge distillation framework, producing a student model, MiniVLN, and showcasing the significant potential of distillation techniques in developing lightweight models. The proposed method aims to capture fine-grained knowledge during the pretraining phase and navigation-specific knowledge during the fine-tuning phase. Our findings indicate that the two-stage distillation approach is more effective in narrowing the performance gap between the teacher model and the student model compared to single-stage distillation. On the public R2R and REVERIE benchmarks, MiniVLN achieves performance on par with the teacher model while having only about 12% of the teacher model's parameter count.

NavGPT-2: Unleashing Navigational Reasoning Capability for Large Vision-Language Models 2024-09-20
Show

Capitalizing on the remarkable advancements in Large Language Models (LLMs), there is a burgeoning initiative to harness LLMs for instruction following robotic navigation. Such a trend underscores the potential of LLMs to generalize navigational reasoning and diverse language understanding. However, a significant discrepancy in agent performance is observed when integrating LLMs in the Vision-and-Language navigation (VLN) tasks compared to previous downstream specialist models. Furthermore, the inherent capacity of language to interpret and facilitate communication in agent interactions is often underutilized in these integrations. In this work, we strive to bridge the divide between VLN-specialized models and LLM-based navigation paradigms, while maintaining the interpretative prowess of LLMs in generating linguistic navigational reasoning. By aligning visual content in a frozen LLM, we encompass visual observation comprehension for LLMs and exploit a way to incorporate LLMs and navigation policy networks for effective action predictions and navigational reasoning. We demonstrate the data efficiency of the proposed methods and eliminate the gap between LM-based agents and state-of-the-art VLN specialists.

Accep...

Accepted to ECCV 2024

StratXplore: Strategic Novelty-seeking and Instruction-aligned Exploration for Vision and Language Navigation 2024-09-09
Show

Embodied navigation requires robots to understand and interact with the environment based on given tasks. Vision-Language Navigation (VLN) is an embodied navigation task, where a robot navigates within a previously seen and unseen environment, based on linguistic instruction and visual inputs. VLN agents need access to both local and global action spaces; former for immediate decision making and the latter for recovering from navigational mistakes. Prior VLN agents rely only on instruction-viewpoint alignment for local and global decision making and back-track to a previously visited viewpoint, if the instruction and its current viewpoint mismatches. These methods are prone to mistakes, due to the complexity of the instruction and partial observability of the environment. We posit that, back-tracking is sub-optimal and agent that is aware of its mistakes can recover efficiently. For optimal recovery, exploration should be extended to unexplored viewpoints (or frontiers). The optimal frontier is a recently observed but unexplored viewpoint that aligns with the instruction and is novel. We introduce a memory-based and mistake-aware path planning strategy for VLN agents, called \textit{StratXplore}, that presents global and local action planning to select the optimal frontier for path correction. The proposed method collects all past actions and viewpoint features during navigation and then selects the optimal frontier suitable for recovery. Experimental results show this simple yet effective strategy improves the success rate on two VLN datasets with different task complexities.

Spatially-Aware Speaker for Vision-and-Language Navigation Instruction Generation 2024-09-09
Show

Embodied AI aims to develop robots that can \textit{understand} and execute human language instructions, as well as communicate in natural languages. On this front, we study the task of generating highly detailed navigational instructions for the embodied robots to follow. Although recent studies have demonstrated significant leaps in the generation of step-by-step instructions from sequences of images, the generated instructions lack variety in terms of their referral to objects and landmarks. Existing speaker models learn strategies to evade the evaluation metrics and obtain higher scores even for low-quality sentences. In this work, we propose SAS (Spatially-Aware Speaker), an instruction generator or \textit{Speaker} model that utilises both structural and semantic knowledge of the environment to produce richer instructions. For training, we employ a reward learning method in an adversarial setting to avoid systematic bias introduced by language evaluation metrics. Empirically, our method outperforms existing instruction generation models, evaluated using standard metrics. Our code is available at \url{https://github.com/gmuraleekrishna/SAS}.

Narrowing the Gap between Vision and Action in Navigation 2024-08-19
Show

The existing methods for Vision and Language Navigation in the Continuous Environment (VLN-CE) commonly incorporate a waypoint predictor to discretize the environment. This simplifies the navigation actions into a view selection task and improves navigation performance significantly compared to direct training using low-level actions. However, the VLN-CE agents are still far from the real robots since there are gaps between their visual perception and executed actions. First, VLN-CE agents that discretize the visual environment are primarily trained with high-level view selection, which causes them to ignore crucial spatial reasoning within the low-level action movements. Second, in these models, the existing waypoint predictors neglect object semantics and their attributes related to passibility, which can be informative in indicating the feasibility of actions. To address these two issues, we introduce a low-level action decoder jointly trained with high-level action prediction, enabling the current VLN agent to learn and ground the selected visual view to the low-level controls. Moreover, we enhance the current waypoint predictor by utilizing visual representations containing rich semantic information and explicitly masking obstacles based on humans' prior knowledge about the feasibility of actions. Empirically, our agent can improve navigation performance metrics compared to the strong baselines on both high-level and low-level actions.

MC-GPT: Empowering Vision-and-Language Navigation with Memory Map and Reasoning Chains 2024-08-12
Show

In the Vision-and-Language Navigation (VLN) task, the agent is required to navigate to a destination following a natural language instruction. While learning-based approaches have been a major solution to the task, they suffer from high training costs and lack of interpretability. Recently, Large Language Models (LLMs) have emerged as a promising tool for VLN due to their strong generalization capabilities. However, existing LLM-based methods face limitations in memory construction and diversity of navigation strategies. To address these challenges, we propose a suite of techniques. Firstly, we introduce a method to maintain a topological map that stores navigation history, retaining information about viewpoints, objects, and their spatial relationships. This map also serves as a global action space. Additionally, we present a Navigation Chain of Thoughts module, leveraging human navigation examples to enrich navigation strategy diversity. Finally, we establish a pipeline that integrates navigational memory and strategies with perception and action prediction modules. Experimental results on the REVERIE and R2R datasets show that our method effectively enhances the navigation ability of the LLM and improves the interpretability of navigation reasoning.

Loc4Plan: Locating Before Planning for Outdoor Vision and Language Navigation 2024-08-09
Show

Vision and Language Navigation (VLN) is a challenging task that requires agents to understand instructions and navigate to the destination in a visual environment.One of the key challenges in outdoor VLN is keeping track of which part of the instruction was completed. To alleviate this problem, previous works mainly focus on grounding the natural language to the visual input, but neglecting the crucial role of the agent's spatial position information in the grounding process. In this work, we first explore the substantial effect of spatial position locating on the grounding of outdoor VLN, drawing inspiration from human navigation. In real-world navigation scenarios, before planning a path to the destination, humans typically need to figure out their current location. This observation underscores the pivotal role of spatial localization in the navigation process. In this work, we introduce a novel framework, Locating be for Planning (Loc4Plan), designed to incorporate spatial perception for action planning in outdoor VLN tasks. The main idea behind Loc4Plan is to perform the spatial localization before planning a decision action based on corresponding guidance, which comprises a block-aware spatial locating (BAL) module and a spatial-aware action planning (SAP) module. Specifically, to help the agent perceive its spatial location in the environment, we propose to learn a position predictor that measures how far the agent is from the next intersection for reflecting its position, which is achieved by the BAL module. After the locating process, we propose the SAP module to incorporate spatial information to ground the corresponding guidance and enhance the precision of action planning. Extensive experiments on the Touchdown and map2seq datasets show that the proposed Loc4Plan outperforms the SOTA methods.

arXiv...

arXiv admin note: text overlap with arXiv:2203.13838 by other authors

Navigating Beyond Instructions: Vision-and-Language Navigation in Obstructed Environments 2024-07-31
Show

Real-world navigation often involves dealing with unexpected obstructions such as closed doors, moved objects, and unpredictable entities. However, mainstream Vision-and-Language Navigation (VLN) tasks typically assume instructions perfectly align with the fixed and predefined navigation graphs without any obstructions. This assumption overlooks potential discrepancies in actual navigation graphs and given instructions, which can cause major failures for both indoor and outdoor agents. To address this issue, we integrate diverse obstructions into the R2R dataset by modifying both the navigation graphs and visual observations, introducing an innovative dataset and task, R2R with UNexpected Obstructions (R2R-UNO). R2R-UNO contains various types and numbers of path obstructions to generate instruction-reality mismatches for VLN research. Experiments on R2R-UNO reveal that state-of-the-art VLN methods inevitably encounter significant challenges when facing such mismatches, indicating that they rigidly follow instructions rather than navigate adaptively. Therefore, we propose a novel method called ObVLN (Obstructed VLN), which includes a curriculum training strategy and virtual graph construction to help agents effectively adapt to obstructed environments. Empirical results show that ObVLN not only maintains robust performance in unobstructed scenarios but also achieves a substantial performance advantage with unexpected obstructions.

Accepted to MM 2024
PRET: Planning with Directed Fidelity Trajectory for Vision and Language Navigation 2024-07-16
Show

Vision and language navigation is a task that requires an agent to navigate according to a natural language instruction. Recent methods predict sub-goals on constructed topology map at each step to enable long-term action planning. However, they suffer from high computational cost when attempting to support such high-level predictions with GCN-like models. In this work, we propose an alternative method that facilitates navigation planning by considering the alignment between instructions and directed fidelity trajectories, which refers to a path from the initial node to the candidate locations on a directed graph without detours. This planning strategy leads to an efficient model while achieving strong performance. Specifically, we introduce a directed graph to illustrate the explored area of the environment, emphasizing directionality. Then, we firstly define the trajectory representation as a sequence of directed edge features, which are extracted from the panorama based on the corresponding orientation. Ultimately, we assess and compare the alignment between instruction and different trajectories during navigation to determine the next navigation target. Our method outperforms previous SOTA method BEVBert on RxR dataset and is comparable on R2R dataset while largely reducing the computational cost. Code is available: https://github.com/iSEE-Laboratory/VLN-PRET.

ESceme: Vision-and-Language Navigation with Episodic Scene Memory 2024-07-15
Show

Vision-and-language navigation (VLN) simulates a visual agent that follows natural-language navigation instructions in real-world scenes. Existing approaches have made enormous progress in navigation in new environments, such as beam search, pre-exploration, and dynamic or hierarchical history encoding. To balance generalization and efficiency, we resort to memorizing visited scenarios apart from the ongoing route while navigating. In this work, we introduce a mechanism of Episodic Scene memory (ESceme) for VLN that wakes an agent's memories of past visits when it enters the current scene. The episodic scene memory allows the agent to envision a bigger picture of the next prediction. This way, the agent learns to utilize dynamically updated information instead of merely adapting to the current observations. We provide a simple yet effective implementation of ESceme by enhancing the accessible views at each location and progressively completing the memory while navigating. We verify the superiority of ESceme on short-horizon (R2R), long-horizon (R4R), and vision-and-dialog (CVDN) VLN tasks. Our ESceme also wins first place on the CVDN leaderboard. Code is available: \url{https://github.com/qizhust/esceme}.

Accepted by IJCV
NaVid: Video-based VLM Plans the Next Step for Vision-and-Language Navigation 2024-06-30
Show

Vision-and-language navigation (VLN) stands as a key research problem of Embodied AI, aiming at enabling agents to navigate in unseen environments following linguistic instructions. In this field, generalization is a long-standing challenge, either to out-of-distribution scenes or from Sim to Real. In this paper, we propose NaVid, a video-based large vision language model (VLM), to mitigate such a generalization gap. NaVid makes the first endeavor to showcase the capability of VLMs to achieve state-of-the-art level navigation performance without any maps, odometers, or depth inputs. Following human instruction, NaVid only requires an on-the-fly video stream from a monocular RGB camera equipped on the robot to output the next-step action. Our formulation mimics how humans navigate and naturally gets rid of the problems introduced by odometer noises, and the Sim2Real gaps from map or depth inputs. Moreover, our video-based approach can effectively encode the historical observations of robots as spatio-temporal contexts for decision making and instruction following. We train NaVid with 510k navigation samples collected from continuous environments, including action-planning and instruction-reasoning samples, along with 763k large-scale web data. Extensive experiments show that NaVid achieves state-of-the-art performance in simulation environments and the real world, demonstrating superior cross-dataset and Sim2Real transfer. We thus believe our proposed VLM approach plans the next step for not only the navigation agents but also this research field.

Accep...

Accepted by Robotics: Science and Systems (RSS 2024)

Into the Unknown: Generating Geospatial Descriptions for New Environments 2024-06-28
Show

Similar to vision-and-language navigation (VLN) tasks that focus on bridging the gap between vision and language for embodied navigation, the new Rendezvous (RVS) task requires reasoning over allocentric spatial relationships (independent of the observer's viewpoint) using non-sequential navigation instructions and maps. However, performance substantially drops in new environments with no training data. Using opensource descriptions paired with coordinates (e.g., Wikipedia) provides training data but suffers from limited spatially-oriented text resulting in low geolocation resolution. We propose a large-scale augmentation method for generating high-quality synthetic data for new environments using readily available geospatial data. Our method constructs a grounded knowledge-graph, capturing entity relationships. Sampled entities and relations (`shop north of school') generate navigation instructions via (i) generating numerous templates using context-free grammar (CFG) to embed specific entities and relations; (ii) feeding the entities and relation into a large language model (LLM) for instruction generation. A comprehensive evaluation on RVS, showed that our approach improves the 100-meter accuracy by 45.83% on unseen environments. Furthermore, we demonstrate that models trained with CFG-based augmentation achieve superior performance compared with those trained with LLM-based augmentation, both in unseen and seen environments. These findings suggest that the potential advantages of explicitly structuring spatial information for text-based geospatial reasoning in previously unknown, can unlock data-scarce scenarios.

MAGIC: Meta-Ability Guided Interactive Chain-of-Distillation for Effective-and-Efficient Vision-and-Language Navigation 2024-06-25
Show

Despite the remarkable developments of recent large models in Embodied Artificial Intelligence (E-AI), their integration into robotics is hampered by their excessive parameter sizes and computational demands. Towards the Vision-and-Language Navigation (VLN) task, a core task in E-AI, this paper reveals the great potential of using knowledge distillation for obtaining lightweight student models by proposing a Meta-Ability Guided Interactive Chain-of-distillation (MAGIC) method. Specifically, a Meta-Ability Knowledge Distillation (MAKD) framework is proposed for decoupling and refining the necessary meta-abilities of VLN agents. A Meta-Knowledge Randomization Weighting (MKRW) and a Meta-Knowledge Transferable Determination (MKTD) module are incorporated to dynamically adjust aggregation weights at the meta-ability and sample levels, respectively. Move beyond the traditional one-step unidirectional distillation, an Interactive Chain-of-Distillation (ICoD) learning strategy is proposed to allow students to give feedback to teachers, forming a new multi-step teacher-student co-evolution pipeline. Remarkably, on the R2R test unseen public leaderboard, our smallest model, MAGIC-S, with only 5% (11M) of the teacher's size, outperforms all previous methods under the same training data. Additionally, our largest model, MAGIC-L, surpasses the previous state-of-the-art by 5.84% in SPL and 3.18% in SR. Furthermore, a new dataset was collected and annotated from our living environments, where MAGIC-S demonstrated superior performance and real-time efficiency. Our code is publicly available on https://github.com/CrystalSixone/VLN-MAGIC.

I2EDL: Interactive Instruction Error Detection and Localization 2024-06-23
Show

In the Vision-and-Language Navigation in Continuous Environments (VLN-CE) task, the human user guides an autonomous agent to reach a target goal via a series of low-level actions following a textual instruction in natural language. However, most existing methods do not address the likely case where users may make mistakes when providing such instruction (e.g. "turn left" instead of "turn right"). In this work, we address a novel task of Interactive VLN in Continuous Environments (IVLN-CE), which allows the agent to interact with the user during the VLN-CE navigation to verify any doubts regarding the instruction errors. We propose an Interactive Instruction Error Detector and Localizer (I2EDL) that triggers the user-agent interaction upon the detection of instruction errors during the navigation. We leverage a pre-trained module to detect instruction errors and pinpoint them in the instruction by cross-referencing the textual input and past observations. In such way, the agent is able to query the user for a timely correction, without demanding the user's cognitive load, as we locate the probable errors to a precise part of the instruction. We evaluate the proposed I2EDL on a dataset of instructions containing errors, and further devise a novel metric, the Success weighted by Interaction Number (SIN), to reflect both the navigation performance and the interaction effectiveness. We show how the proposed method can ask focused requests for corrections to the user, which in turn increases the navigation success, while minimizing the interactions.

Accep...

Accepted at IEEE RO-MAN 2024

MapGPT: Map-Guided Prompting with Adaptive Path Planning for Vision-and-Language Navigation 2024-06-20
Show

Embodied agents equipped with GPT as their brains have exhibited extraordinary decision-making and generalization abilities across various tasks. However, existing zero-shot agents for vision-and-language navigation (VLN) only prompt GPT-4 to select potential locations within localized environments, without constructing an effective "global-view" for the agent to understand the overall environment. In this work, we present a novel map-guided GPT-based agent, dubbed MapGPT, which introduces an online linguistic-formed map to encourage global exploration. Specifically, we build an online map and incorporate it into the prompts that include node information and topological relationships, to help GPT understand the spatial environment. Benefiting from this design, we further propose an adaptive planning mechanism to assist the agent in performing multi-step path planning based on a map, systematically exploring multiple candidate nodes or sub-goals step by step. Extensive experiments demonstrate that our MapGPT is applicable to both GPT-4 and GPT-4V, achieving state-of-the-art zero-shot performance on R2R and REVERIE simultaneously (~10% and ~12% improvements in SR), and showcasing the newly emergent global thinking and path planning abilities of the GPT.

LLM/V...

LLM/VLM-based VLN Agents. Accepted to ACL 2024. Project: https://chen-judge.github.io/MapGPT/

Why Only Text: Empowering Vision-and-Language Navigation with Multi-modal Prompts 2024-06-04
Show

Current Vision-and-Language Navigation (VLN) tasks mainly employ textual instructions to guide agents. However, being inherently abstract, the same textual instruction can be associated with different visual signals, causing severe ambiguity and limiting the transfer of prior knowledge in the vision domain from the user to the agent. To fill this gap, we propose Vision-and-Language Navigation with Multi-modal Prompts (VLN-MP), a novel task augmenting traditional VLN by integrating both natural language and images in instructions. VLN-MP not only maintains backward compatibility by effectively handling text-only prompts but also consistently shows advantages with different quantities and relevance of visual prompts. Possible forms of visual prompts include both exact and similar object images, providing adaptability and versatility in diverse navigation scenarios. To evaluate VLN-MP under a unified framework, we implement a new benchmark that offers: (1) a training-free pipeline to transform textual instructions into multi-modal forms with landmark images; (2) diverse datasets with multi-modal instructions for different downstream tasks; (3) a novel module designed to process various image prompts for seamless integration with state-of-the-art VLN models. Extensive experiments on four VLN benchmarks (R2R, RxR, REVERIE, CVDN) show that incorporating visual prompts significantly boosts navigation performance. While maintaining efficiency with text-only prompts, VLN-MP enables agents to navigate in the pre-explore setting and outperform text-based models, showing its broader applicability.

IJCAI 2024
Augmented Commonsense Knowledge for Remote Object Grounding 2024-06-03
Show

The vision-and-language navigation (VLN) task necessitates an agent to perceive the surroundings, follow natural language instructions, and act in photo-realistic unseen environments. Most of the existing methods employ the entire image or object features to represent navigable viewpoints. However, these representations are insufficient for proper action prediction, especially for the REVERIE task, which uses concise high-level instructions, such as ''Bring me the blue cushion in the master bedroom''. To address enhancing representation, we propose an augmented commonsense knowledge model (ACK) to leverage commonsense information as a spatio-temporal knowledge graph for improving agent navigation. Specifically, the proposed approach involves constructing a knowledge base by retrieving commonsense information from ConceptNet, followed by a refinement module to remove noisy and irrelevant knowledge. We further present ACK which consists of knowledge graph-aware cross-modal and concept aggregation modules to enhance visual representation and visual-textual data alignment by integrating visible objects, commonsense knowledge, and concept history, which includes object and knowledge temporal information. Moreover, we add a new pipeline for the commonsense-based decision-making process which leads to more accurate local action prediction. Experimental results demonstrate our proposed model noticeably outperforms the baseline and archives the state-of-the-art on the REVERIE benchmark.

Vision-and-Language Navigation Generative Pretrained Transformer 2024-05-27
Show

In the Vision-and-Language Navigation (VLN) field, agents are tasked with navigating real-world scenes guided by linguistic instructions. Enabling the agent to adhere to instructions throughout the process of navigation represents a significant challenge within the domain of VLN. To address this challenge, common approaches often rely on encoders to explicitly record past locations and actions, increasing model complexity and resource consumption. Our proposal, the Vision-and-Language Navigation Generative Pretrained Transformer (VLN-GPT), adopts a transformer decoder model (GPT2) to model trajectory sequence dependencies, bypassing the need for historical encoding modules. This method allows for direct historical information access through trajectory sequence, enhancing efficiency. Furthermore, our model separates the training process into offline pre-training with imitation learning and online fine-tuning with reinforcement learning. This distinction allows for more focused training objectives and improved performance. Performance assessments on the VLN dataset reveal that VLN-GPT surpasses complex state-of-the-art encoder-based models.

Vision Language Action

Title Date Abstract Comment
EgoVLA: Learning Vision-Language-Action Models from Egocentric Human Videos 2025-07-17
Show

Real robot data collection for imitation learning has led to significant advancements in robotic manipulation. However, the requirement for robot hardware in the process fundamentally constrains the scale of the data. In this paper, we explore training Vision-Language-Action (VLA) models using egocentric human videos. The benefit of using human videos is not only for their scale but more importantly for the richness of scenes and tasks. With a VLA trained on human video that predicts human wrist and hand actions, we can perform Inverse Kinematics and retargeting to convert the human actions to robot actions. We fine-tune the model using a few robot manipulation demonstrations to obtain the robot policy, namely EgoVLA. We propose a simulation benchmark called Ego Humanoid Manipulation Benchmark, where we design diverse bimanual manipulation tasks with demonstrations. We fine-tune and evaluate EgoVLA with Ego Humanoid Manipulation Benchmark and show significant improvements over baselines and ablate the importance of human data. Videos can be found on our website: https://rchalyang.github.io/EgoVLA

More ...

More videos can be found on our website: https://rchalyang.github.io/EgoVLA

LaViPlan : Language-Guided Visual Path Planning with RLVR 2025-07-17
Show

Out-of-distribution (OOD) scenarios in autonomous driving refer to situations that deviate from the training domain, often leading to unexpected and potentially hazardous behavior from planners that lack prior exposure to such cases. Recently, Vision-Language Models (VLMs) have been introduced into autonomous driving research for their promising generalization capabilities in OOD settings. Early studies demonstrated that VLMs could recognize OOD scenarios and generate user-level decisions such as "go straight" or "turn right." However, a new challenge has emerged due to the misalignment between the VLM's high-level decisions or visual reasoning expressed in language, and the low-level predicted trajectories interpreted as actions. In this paper, we propose LaViPlan, a framework that leverages Reinforcement Learning with Verifiable Rewards (RLVR) to optimize VLMs using planning-oriented metrics. This approach addresses the vision-language-action misalignment observed in existing VLMs fine-tuned via supervised learning, which can recognize driving scenarios but often produce context-unaware decisions. Experimental results demonstrate that our method improves situational awareness and decision-making under OOD conditions, highlighting its potential to mitigate the misalignment issue. This work introduces a promising post-training paradigm for VLM agents in the context of autonomous driving.

11 pages, 6 figures
DreamVLA: A Vision-Language-Action Model Dreamed with Comprehensive World Knowledge 2025-07-17
Show

Recent advances in vision-language-action (VLA) models have shown promise in integrating image generation with action prediction to improve generalization and reasoning in robot manipulation. However, existing methods are limited to challenging image-based forecasting, which suffers from redundant information and lacks comprehensive and critical world knowledge, including dynamic, spatial and semantic information. To address these limitations, we propose DreamVLA, a novel VLA framework that integrates comprehensive world knowledge forecasting to enable inverse dynamics modeling, thereby establishing a perception-prediction-action loop for manipulation tasks. Specifically, DreamVLA introduces a dynamic-region-guided world knowledge prediction, integrated with the spatial and semantic cues, which provide compact yet comprehensive representations for action planning. This design aligns with how humans interact with the world by first forming abstract multimodal reasoning chains before acting. To mitigate interference among the dynamic, spatial and semantic information during training, we adopt a block-wise structured attention mechanism that masks their mutual attention, preventing information leakage and keeping each representation clean and disentangled. Moreover, to model the conditional distribution over future actions, we employ a diffusion-based transformer that disentangles action representations from shared latent features. Extensive experiments on both real-world and simulation environments demonstrate that DreamVLA achieves 76.7% success rate on real robot tasks and 4.44 average length on the CALVIN ABC-D benchmarks.

AnyPos: Automated Task-Agnostic Actions for Bimanual Manipulation 2025-07-17
Show

Vision-language-action (VLA) models have shown promise on task-conditioned control in complex settings such as bimanual manipulation. However, the heavy reliance on task-specific human demonstrations limits their generalization and incurs high data acquisition costs. In this work, we present a new notion of task-agnostic action paradigm that decouples action execution from task-specific conditioning, enhancing scalability, efficiency, and cost-effectiveness. To address the data collection challenges posed by this paradigm -- such as low coverage density, behavioral redundancy, and safety risks -- we introduce ATARA (Automated Task-Agnostic Random Actions), a scalable self-supervised framework that accelerates collection by over $ 30\times $ compared to human teleoperation. To further enable effective learning from task-agnostic data, which often suffers from distribution mismatch and irrelevant trajectories, we propose AnyPos, an inverse dynamics model equipped with Arm-Decoupled Estimation and a Direction-Aware Decoder (DAD). We additionally integrate a video-conditioned action validation module to verify the feasibility of learned policies across diverse manipulation tasks. Extensive experiments show that the AnyPos-ATARA pipeline yields a 51% improvement in test accuracy and achieves 30-40% higher success rates in downstream tasks such as lifting, pick-and-place, and clicking, using replay-based video validation. Project Page: https://embodiedfoundation.github.io/vidar_anypos

Hi Robot: Open-Ended Instruction Following with Hierarchical Vision-Language-Action Models 2025-07-15
Show

Generalist robots that can perform a range of different tasks in open-world settings must be able to not only reason about the steps needed to accomplish their goals, but also process complex instructions, prompts, and even feedback during task execution. Intricate instructions (e.g., "Could you make me a vegetarian sandwich?" or "I don't like that one") require not just the ability to physically perform the individual steps, but the ability to situate complex commands and feedback in the physical world. In this work, we describe a system that uses vision-language models in a hierarchical structure, first reasoning over complex prompts and user feedback to deduce the most appropriate next step to fulfill the task, and then performing that step with low-level actions. In contrast to direct instruction following methods that can fulfill simple commands ("pick up the cup"), our system can reason through complex prompts and incorporate situated feedback during task execution ("that's not trash"). We evaluate our system across three robotic platforms, including single-arm, dual-arm, and dual-arm mobile robots, demonstrating its ability to handle tasks such as cleaning messy tables, making sandwiches, and grocery shopping. Videos are available at https://www.pi.website/research/hirobot

ICML 2025
Vision Language Action Models in Robotic Manipulation: A Systematic Review 2025-07-14
Show

Vision Language Action (VLA) models represent a transformative shift in robotics, with the aim of unifying visual perception, natural language understanding, and embodied control within a single learning framework. This review presents a comprehensive and forward-looking synthesis of the VLA paradigm, with a particular emphasis on robotic manipulation and instruction-driven autonomy. We comprehensively analyze 102 VLA models, 26 foundational datasets, and 12 simulation platforms that collectively shape the development and evaluation of VLAs models. These models are categorized into key architectural paradigms, each reflecting distinct strategies for integrating vision, language, and control in robotic systems. Foundational datasets are evaluated using a novel criterion based on task complexity, variety of modalities, and dataset scale, allowing a comparative analysis of their suitability for generalist policy learning. We introduce a two-dimensional characterization framework that organizes these datasets based on semantic richness and multimodal alignment, showing underexplored regions in the current data landscape. Simulation environments are evaluated for their effectiveness in generating large-scale data, as well as their ability to facilitate transfer from simulation to real-world settings and the variety of supported tasks. Using both academic and industrial contributions, we recognize ongoing challenges and outline strategic directions such as scalable pretraining protocols, modular architectural design, and robust multimodal alignment strategies. This review serves as both a technical reference and a conceptual roadmap for advancing embodiment and robotic control, providing insights that span from dataset generation to real world deployment of generalist robotic agents.

submi...

submitted to annual review in control

Tactile-VLA: Unlocking Vision-Language-Action Model's Physical Knowledge for Tactile Generalization 2025-07-12
Show

Vision-Language-Action (VLA) models have shown remarkable achievements, driven by the rich implicit knowledge of their vision-language components. However, achieving generalist robotic agents demands precise grounding into physical interactions, especially in contact-rich scenarios where fine-grained force control is essential. We advance VLAs' implicit knowledge beyond identifying what to do, towards guiding how to physically interact with real world. This paper introduces Tactile-VLA, a novel framework that deeply fuses vision, language, action, and tactile sensing. This framework incorporates a hybrid position-force controller to translate the model's intentions into precise physical actions and a reasoning module that allows the robot to adapt its strategy based on tactile feedback. Experiments demonstrate Tactile-VLA's effectiveness and generalizability in three key aspects: (1) enabling tactile-aware instruction following, (2) utilizing tactile-relevant commonsense, and (3) facilitating adaptive tactile-involved reasoning. A key finding is that the VLM's prior knowledge already contains semantic understanding of physical interaction; by connecting it to the robot's tactile sensors with only a few demonstrations, we can activate this prior knowledge to achieve zero-shot generalization in contact-rich tasks.

VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting 2025-07-10
Show

Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, their generalization remains limited when applied to novel objects or unfamiliar environments that lie outside the training distribution. To address this, many existing approaches integrate additional components such as depth estimation, segmentation, or even diffusion to improve generalization, at the cost of adding significant computation overhead, resulting in low efficiency. This motivates the exploration of efficient action prediction methods, which are independent of additional high-level visual representations or diffusion techniques. In this work, we propose VOTE, an efficient and general framework for the optimization and acceleration of VLA models. In details, we propose a novel tokenizer-free fine-tuning approach for parallel accurate action prediction, which reduces computational overhead and accelerates inference speed. Additionally, we adopt an ensemble voting strategy for the action sampling, which significantly improves model performance and enhances generalization. Experimental results show that our method achieves state-of-the-art performance with 35x faster inference and 145 Hz throughput. All the details and codes will be open-sourced.

3D-Generalist: Self-Improving Vision-Language-Action Models for Crafting 3D Worlds 2025-07-09
Show

Despite large-scale pretraining endowing models with language and vision reasoning capabilities, improving their spatial reasoning capability remains challenging due to the lack of data grounded in the 3D world. While it is possible for humans to manually create immersive and interactive worlds through 3D graphics, as seen in applications such as VR, gaming, and robotics, this process remains highly labor-intensive. In this paper, we propose a scalable method for generating high-quality 3D environments that can serve as training data for foundation models. We recast 3D environment building as a sequential decision-making problem, employing Vision-Language-Models (VLMs) as policies that output actions to jointly craft a 3D environment's layout, materials, lighting, and assets. Our proposed framework, 3D-Generalist, trains VLMs to generate more prompt-aligned 3D environments via self-improvement fine-tuning. We demonstrate the effectiveness of 3D-Generalist and the proposed training strategy in generating simulation-ready 3D environments. Furthermore, we demonstrate its quality and scalability in synthetic data generation by pretraining a vision foundation model on the generated data. After fine-tuning the pre-trained model on downstream tasks, we show that it surpasses models pre-trained on meticulously human-crafted synthetic data and approaches results achieved with real data orders of magnitude larger.

proje...

project website: https://ai.stanford.edu/~sunfanyun/3d-generalist/

Hume: Introducing System-2 Thinking in Visual-Language-Action Model 2025-07-08
Show

Humans practice slow thinking before performing actual actions when handling complex tasks in the physical world. This thinking paradigm, recently, has achieved remarkable advancement in boosting Large Language Models (LLMs) to solve complex tasks in digital domains. However, the potential of slow thinking remains largely unexplored for robotic foundation models interacting with the physical world. In this work, we propose Hume: a dual-system Vision-Language-Action (VLA) model with value-guided System-2 thinking and cascaded action denoising, exploring human-like thinking capabilities of Vision-Language-Action models for dexterous robot control. System 2 of Hume implements value-Guided thinking by extending a Vision-Language-Action Model backbone with a novel value-query head to estimate the state-action value of predicted actions. The value-guided thinking is conducted by repeat sampling multiple action candidates and selecting one according to state-action value. System 1 of Hume is a lightweight reactive visuomotor policy that takes System 2 selected action and performs cascaded action denoising for dexterous robot control. At deployment time, System 2 performs value-guided thinking at a low frequency while System 1 asynchronously receives the System 2 selected action candidate and predicts fluid actions in real time. We show that Hume outperforms the existing state-of-the-art Vision-Language-Action models across multiple simulation benchmark and real-robot deployments.

NavigScene: Bridging Local Perception and Global Navigation for Beyond-Visual-Range Autonomous Driving 2025-07-07
Show

Autonomous driving systems have made significant advances in Q&A, perception, prediction, and planning based on local visual information, yet they struggle to incorporate broader navigational context that human drivers routinely utilize. We address this critical gap between local sensor data and global navigation information by proposing NavigScene, an auxiliary navigation-guided natural language dataset that simulates a human-like driving environment within autonomous driving systems. Moreover, we develop three complementary paradigms to leverage NavigScene: (1) Navigation-guided Reasoning, which enhances vision-language models by incorporating navigation context into the prompting approach; (2) Navigation-guided Preference Optimization, a reinforcement learning method that extends Direct Preference Optimization to improve vision-language model responses by establishing preferences for navigation-relevant summarized information; and (3) Navigation-guided Vision-Language-Action model, which integrates navigation guidance and vision-language models with conventional driving models through feature fusion. Extensive experiments demonstrate that our approaches significantly improve performance across perception, prediction, planning, and question-answering tasks by enabling reasoning capabilities beyond visual range and improving generalization to diverse driving scenarios. This work represents a significant step toward more comprehensive autonomous driving systems capable of navigating complex, unfamiliar environments with greater reliability and safety.

Accep...

Accepted by ACM Multimedia 2025

RoboMonkey: Scaling Test-Time Sampling and Verification for Vision-Language-Action Models 2025-07-07
Show

Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in visuomotor control, yet ensuring their robustness in unstructured real-world environments remains a persistent challenge. In this paper, we investigate test-time scaling through the lens of sampling and verification as means to enhance the robustness and generalization of VLAs. We first demonstrate that the relationship between action error and the number of generated samples follows an exponentiated power law across a range of VLAs, indicating the existence of inference-time scaling laws. Building on these insights, we introduce RoboMonkey, a test-time scaling framework for VLAs. At deployment, RoboMonkey samples a small set of actions from a VLA, applies Gaussian perturbation and majority voting to construct an action proposal distribution, and then uses a Vision Language Model (VLM)-based verifier to select the optimal action. We propose a synthetic data generation pipeline for training such VLM-based action verifiers, and demonstrate that scaling the synthetic dataset consistently improves verification and downstream accuracy. Through extensive simulated and hardware experiments, we show that pairing existing VLAs with RoboMonkey yields significant performance gains, achieving a 25% absolute improvement on out-of-distribution tasks and 9% on in-distribution tasks. Additionally, when adapting to new robot setups, we show that fine-tuning both VLAs and action verifiers yields a 7% performance increase compared to fine-tuning VLAs alone.

Hijacking JARVIS: Benchmarking Mobile GUI Agents against Unprivileged Third Parties 2025-07-06
Show

Mobile GUI agents are designed to autonomously execute diverse device-control tasks by interpreting and interacting with mobile screens. Despite notable advancements, their resilience in real-world scenarios where screen content may be partially manipulated by untrustworthy third parties remains largely unexplored. Owing to their black-box and autonomous nature, these agents are vulnerable to manipulations that could compromise user devices. In this work, we present the first systematic investigation into the vulnerabilities of mobile GUI agents. We introduce a scalable attack simulation framework AgentHazard, which enables flexible and targeted modifications of screen content within existing applications. Leveraging this framework, we develop a comprehensive benchmark suite comprising both a dynamic task execution environment and a static dataset of vision-language-action tuples, totaling over 3,000 attack scenarios. The dynamic environment encompasses 58 reproducible tasks in an emulator with various types of hazardous UI content, while the static dataset is constructed from 210 screenshots collected from 14 popular commercial apps. Importantly, our content modifications are designed to be feasible for unprivileged third parties. We evaluate 7 widely-used mobile GUI agents and 5 common backbone models using our benchmark. Our findings reveal that all examined agents are significantly influenced by misleading third-party content (with an average misleading rate of 28.8% in human-crafted attack scenarios) and that their vulnerabilities are closely linked to the employed perception modalities and backbone LLMs. Furthermore, we assess training-based mitigation strategies, highlighting both the challenges and opportunities for enhancing the robustness of mobile GUI agents. Our code and data will be released at https://agenthazard.github.io.

DexVLG: Dexterous Vision-Language-Grasp Model at Scale 2025-07-03
Show

As large models gain traction, vision-language-action (VLA) systems are enabling robots to tackle increasingly complex tasks. However, limited by the difficulty of data collection, progress has mainly focused on controlling simple gripper end-effectors. There is little research on functional grasping with large models for human-like dexterous hands. In this paper, we introduce DexVLG, a large Vision-Language-Grasp model for Dexterous grasp pose prediction aligned with language instructions using single-view RGBD input. To accomplish this, we generate a dataset of 170 million dexterous grasp poses mapped to semantic parts across 174,000 objects in simulation, paired with detailed part-level captions. This large-scale dataset, named DexGraspNet 3.0, is used to train a VLM and flow-matching-based pose head capable of producing instruction-aligned grasp poses for tabletop objects. To assess DexVLG's performance, we create benchmarks in physics-based simulations and conduct real-world experiments. Extensive testing demonstrates DexVLG's strong zero-shot generalization capabilities-achieving over 76% zero-shot execution success rate and state-of-the-art part-grasp accuracy in simulation-and successful part-aligned grasps on physical objects in real-world scenarios.

TriVLA: A Triple-System-Based Unified Vision-Language-Action Model for General Robot Control 2025-07-03
Show

Recent advancements in vision-language models (VLMs) for common-sense reasoning have led to the development of vision-language-action (VLA) models, enabling robots to perform generalized manipulation. Although existing autoregressive VLA methods design a specific architecture like dual-system to leverage large-scale pretrained knowledge, they tend to capture static information, often neglecting the dynamic aspects vital for embodied tasks. To this end, we propose TriVLA, a unified Vision-Language-Action model with a triple-system architecture for general robot control. The vision-language module (System 2) interprets the environment through vision and language instructions. The dynamics perception module (System 3) inherently produces visual representations that encompass both current static information and predicted future dynamics, thereby providing valuable guidance for policy learning. TriVLA utilizes pre-trained VLM model and fine-tunes pre-trained video foundation model on robot datasets along with internet human manipulation data. The subsequent policy learning module (System 1) generates fluid motor actions in real time. Experimental evaluation demonstrates that TriVLA operates at approximately 36 Hz and surpasses state-of-the-art imitation learning baselines on standard simulation benchmarks as well as challenging real-world manipulation tasks.

cVLA: Towards Efficient Camera-Space VLAs 2025-07-02
Show

Vision-Language-Action (VLA) models offer a compelling framework for tackling complex robotic manipulation tasks, but they are often expensive to train. In this paper, we propose a novel VLA approach that leverages the competitive performance of Vision Language Models (VLMs) on 2D images to directly infer robot end-effector poses in image frame coordinates. Unlike prior VLA models that output low-level controls, our model predicts trajectory waypoints, making it both more efficient to train and robot embodiment agnostic. Despite its lightweight design, our next-token prediction architecture effectively learns meaningful and executable robot trajectories. We further explore the underutilized potential of incorporating depth images, inference-time techniques such as decoding strategies, and demonstration-conditioned action generation. Our model is trained on a simulated dataset and exhibits strong sim-to-real transfer capabilities. We evaluate our approach using a combination of simulated and real data, demonstrating its effectiveness on a real robotic system.

20 pages, 10 figures
A Survey on Vision-Language-Action Models: An Action Tokenization Perspective 2025-07-02
Show

The remarkable advancements of vision and language foundation models in multimodal understanding, reasoning, and generation has sparked growing efforts to extend such intelligence to the physical world, fueling the flourishing of vision-language-action (VLA) models. Despite seemingly diverse approaches, we observe that current VLA models can be unified under a single framework: vision and language inputs are processed by a series of VLA modules, producing a chain of \textit{action tokens} that progressively encode more grounded and actionable information, ultimately generating executable actions. We further determine that the primary design choice distinguishing VLA models lies in how action tokens are formulated, which can be categorized into language description, code, affordance, trajectory, goal state, latent representation, raw action, and reasoning. However, there remains a lack of comprehensive understanding regarding action tokens, significantly impeding effective VLA development and obscuring future directions. Therefore, this survey aims to categorize and interpret existing VLA research through the lens of action tokenization, distill the strengths and limitations of each token type, and identify areas for improvement. Through this systematic review and analysis, we offer a synthesized outlook on the broader evolution of VLA models, highlight underexplored yet promising directions, and contribute guidance for future research, hoping to bring the field closer to general-purpose intelligence.

70 pages, 5 figures
MoIRA: Modular Instruction Routing Architecture for Multi-Task Robotics 2025-07-02
Show

Mixture-of-Experts (MoE) approaches have recently gained traction in robotics applications due to their ability to dynamically allocate computational resources and specialize sub-networks for distinct tasks or environmental contexts, enabling more efficient decision-making. Such systems often comprise sparsely activated experts combined under a single monolithic architecture and require a well-configured internal routing mechanism, which does not allow for selective low-level expert and router customization and requires additional training. We propose MoIRA, an architecture-agnostic modular MoE framework designed to coordinate existing experts with an external text-based router. MoIRA incorporates two zero-shot routing options: embedding-based similarity and prompt-driven language model inference. In our experiments, we choose large Vision-Language-Action models, gr00t-N1 and $\pi_0$, as the underlying experts, and train low-rank adapters for low-overhead inference. We evaluate MoIRA on various GR1 Humanoid tasks and LIBERO Spatial and Goal benchmarks, where it consistently outperforms generalist models and competes with other MoE pipelines. Additionally, we analyse the robustness of the proposed approach to the variations of the instructions. While relying solely on textual descriptions of tasks and experts, MoIRA demonstrates the practical viability of modular deployment with precise, low-effort routing and provides an alternative, scalable foundation for future multi-expert robotic systems.

Prepr...

Preprint of a manuscript submitted for peer review

VQ-VLA: Improving Vision-Language-Action Models via Scaling Vector-Quantized Action Tokenizers 2025-07-01
Show

In this paper, we introduce an innovative vector quantization based action tokenizer built upon the largest-scale action trajectory dataset to date, leveraging over 100 times more data than previous approaches. This extensive dataset enables our tokenizer to capture rich spatiotemporal dynamics, resulting in a model that not only accelerates inference but also generates smoother and more coherent action outputs. Once trained, the tokenizer can be seamlessly adapted to a wide range of downstream tasks in a zero-shot manner, from short-horizon reactive behaviors to long-horizon planning. A key finding of our work is that the domain gap between synthetic and real action trajectories is marginal, allowing us to effectively utilize a vast amount of synthetic data during training without compromising real-world performance. To validate our approach, we conducted extensive experiments in both simulated environments and on real robotic platforms. The results demonstrate that as the volume of synthetic trajectory data increases, the performance of our tokenizer on downstream tasks improves significantly-most notably, achieving up to a 30% higher success rate on two real-world tasks in long-horizon scenarios. These findings highlight the potential of our action tokenizer as a robust and scalable solution for real-time embodied intelligence systems, paving the way for more efficient and reliable robotic control in diverse application domains.Project website: https://xiaoxiao0406.github.io/vqvla.github.io

Accep...

Accepted by ICCV 2025

Evo-0: Vision-Language-Action Model with Implicit Spatial Understanding 2025-07-01
Show

Vision-Language-Action (VLA) models have emerged as a promising framework for enabling generalist robots capable of perceiving, reasoning, and acting in the real world. These models usually build upon pretrained Vision-Language Models (VLMs), which excel at semantic understanding due to large-scale text pretraining. However, VLMs typically lack precise spatial understanding capabilities, as they are primarily tuned on 2D image-text pairs without 3D supervision. To address this limitation, recent approaches have incorporated explicit 3D inputs such as point clouds or depth maps, but this necessitates additional depth sensors or defective estimation. In contrast, our work introduces a plug-and-play module that implicitly injects 3D geometry features into VLA models by leveraging an off-the-shelf visual geometry foundation models. We design five spatially challenging tasks that require precise spatial understanding ability to validate effectiveness of our method. Extensive evaluations show that our method significantly improves the performance of state-of-the-art VLA models across diverse scenarios.

A Survey on Vision-Language-Action Models for Autonomous Driving 2025-06-30
Show

The rapid progress of multimodal large language models (MLLM) has paved the way for Vision-Language-Action (VLA) paradigms, which integrate visual perception, natural language understanding, and control within a single policy. Researchers in autonomous driving are actively adapting these methods to the vehicle domain. Such models promise autonomous vehicles that can interpret high-level instructions, reason about complex traffic scenes, and make their own decisions. However, the literature remains fragmented and is rapidly expanding. This survey offers the first comprehensive overview of VLA for Autonomous Driving (VLA4AD). We (i) formalize the architectural building blocks shared across recent work, (ii) trace the evolution from early explainer to reasoning-centric VLA models, and (iii) compare over 20 representative models according to VLA's progress in the autonomous driving domain. We also consolidate existing datasets and benchmarks, highlighting protocols that jointly measure driving safety, accuracy, and explanation quality. Finally, we detail open challenges - robustness, real-time efficiency, and formal verification - and outline future directions of VLA4AD. This survey provides a concise yet complete reference for advancing interpretable socially aligned autonomous vehicles. Github repo is available at \href{https://github.com/JohnsonJiang1996/Awesome-VLA4AD}{SicongJiang/Awesome-VLA4AD}.

4D-VLA: Spatiotemporal Vision-Language-Action Pretraining with Cross-Scene Calibration 2025-06-27
Show

Leveraging diverse robotic data for pretraining remains a critical challenge. Existing methods typically model the dataset's action distribution using simple observations as inputs. However, these inputs are often incomplete, resulting in a dispersed conditional action distribution-an issue we refer to as coordinate system chaos and state chaos. This inconsistency significantly hampers pretraining efficiency. To address this, we propose 4D-VLA, a novel approach that effectively integrates 4D information into the input to mitigate these sources of chaos. Our model introduces depth and temporal information into visual features with sequential RGB-D inputs, aligning the coordinate systems of the robot and the scene. This alignment endows the model with strong spatiotemporal reasoning capabilities while minimizing training overhead. Additionally, we introduce memory bank sampling, a frame sampling strategy designed to extract informative frames from historical images, further improving effectiveness and efficiency. Experimental results demonstrate that our pretraining method and architectural components substantially enhance model performance. In both simulated and real-world experiments, our model achieves a significant increase in success rate over OpenVLA. To further assess spatial perception and generalization to novel views, we introduce MV-Bench, a multi-view simulation benchmark. Our model consistently outperforms existing methods, demonstrating stronger spatial understanding and adaptability.

WorldVLA: Towards Autoregressive Action World Model 2025-06-26
Show

We present WorldVLA, an autoregressive action world model that unifies action and image understanding and generation. Our WorldVLA intergrates Vision-Language-Action (VLA) model and world model in one single framework. The world model predicts future images by leveraging both action and image understanding, with the purpose of learning the underlying physics of the environment to improve action generation. Meanwhile, the action model generates the subsequent actions based on image observations, aiding in visual understanding and in turn helps visual generation of the world model. We demonstrate that WorldVLA outperforms standalone action and world models, highlighting the mutual enhancement between the world model and the action model. In addition, we find that the performance of the action model deteriorates when generating sequences of actions in an autoregressive manner. This phenomenon can be attributed to the model's limited generalization capability for action prediction, leading to the propagation of errors from earlier actions to subsequent ones. To address this issue, we propose an attention mask strategy that selectively masks prior actions during the generation of the current action, which shows significant performance improvement in the action chunk generation task.

Code:...

Code: https://github.com/alibaba-damo-academy/WorldVLA

UP-VLA: A Unified Understanding and Prediction Model for Embodied Agent 2025-06-26
Show

Recent advancements in Vision-Language-Action (VLA) models have leveraged pre-trained Vision-Language Models (VLMs) to improve the generalization capabilities. VLMs, typically pre-trained on vision-language understanding tasks, provide rich semantic knowledge and reasoning abilities. However, prior research has shown that VLMs often focus on high-level semantic content and neglect low-level features, limiting their ability to capture detailed spatial information and understand physical dynamics. These aspects, which are crucial for embodied control tasks, remain underexplored in existing pre-training paradigms. In this paper, we investigate the training paradigm for VLAs, and introduce \textbf{UP-VLA}, a \textbf{U}nified VLA model training with both multi-modal \textbf{U}nderstanding and future \textbf{P}rediction objectives, enhancing both high-level semantic comprehension and low-level spatial understanding. Experimental results show that UP-VLA achieves a 33% improvement on the Calvin ABC-D benchmark compared to the previous state-of-the-art method. Additionally, UP-VLA demonstrates improved success rates in real-world manipulation tasks, particularly those requiring precise spatial information.

Accepted to ICML2025
Parallels Between VLA Model Post-Training and Human Motor Learning: Progress, Challenges, and Trends 2025-06-26
Show

Vision-language-action (VLA) models extend vision-language models (VLM) by integrating action generation modules for robotic manipulation. Leveraging strengths of VLM in vision perception and instruction understanding, VLA models exhibit promising generalization across diverse manipulation tasks. However, applications demanding high precision and accuracy reveal performance gaps without further adaptation. Evidence from multiple domains highlights the critical role of post-training to align foundational models with downstream applications, spurring extensive research on post-training VLA models. VLA model post-training aims to address the challenge of improving an embodiment's ability to interact with the environment for the given tasks, analogous to the process of humans motor skills acquisition. Accordingly, this paper reviews post-training strategies for VLA models through the lens of human motor learning, focusing on three dimensions: environments, embodiments, and tasks. A structured taxonomy is introduced aligned with human learning mechanisms: (1) enhancing environmental perception, (2) improving embodiment awareness, (3) deepening task comprehension, and (4) multi-component integration. Finally, key challenges and trends in post-training VLA models are identified, establishing a conceptual framework to guide future research. This work delivers both a comprehensive overview of current VLA model post-training methods from a human motor learning perspective and practical insights for VLA model development. (Project website: https://github.com/AoqunJin/Awesome-VLA-Post-Training)

Unified Vision-Language-Action Model 2025-06-24
Show

Vision-language-action models (VLAs) have garnered significant attention for their potential in advancing robotic manipulation. However, previous approaches predominantly rely on the general comprehension capabilities of vision-language models (VLMs) to generate action signals, often overlooking the rich temporal and causal structure embedded in visual observations. In this paper, we present UniVLA, a unified and native multimodal VLA model that autoregressively models vision, language, and action signals as discrete token sequences. This formulation enables flexible multimodal tasks learning, particularly from large-scale video data. By incorporating world modeling during post-training, UniVLA captures causal dynamics from videos, facilitating effective transfer to downstream policy learning--especially for long-horizon tasks. Our approach sets new state-of-the-art results across several widely used simulation benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge, significantly surpassing previous methods. For example, UniVLA achieves 95.5% average success rate on LIBERO benchmark, surpassing pi0-FAST's 85.5%. We further demonstrate its broad applicability on real-world ALOHA manipulation and autonomous driving.

technical report
CronusVLA: Transferring Latent Motion Across Time for Multi-Frame Prediction in Manipulation 2025-06-24
Show

Recent vision-language-action (VLA) models built on pretrained vision-language models (VLMs) have demonstrated strong generalization across manipulation tasks. However, they remain constrained by a single-frame observation paradigm and cannot fully benefit from the motion information offered by aggregated multi-frame historical observations, as the large vision-language backbone introduces substantial computational cost and inference latency. We propose CronusVLA, a unified framework that extends single-frame VLA models to the multi-frame paradigm through an efficient post-training stage. CronusVLA comprises three key components: (1) single-frame pretraining on large-scale embodied datasets with autoregressive action tokens prediction, which establishes an embodied vision-language foundation; (2) multi-frame encoding, adapting the prediction of vision-language backbones from discrete action tokens to motion features during post-training, and aggregating motion features from historical frames into a feature chunking; (3) cross-frame decoding, which maps the feature chunking to accurate actions via a shared decoder with cross-attention. By reducing redundant token computation and caching past motion features, CronusVLA achieves efficient inference. As an application of motion features, we further propose an action adaptation mechanism based on feature-action retrieval to improve model performance during finetuning. CronusVLA achieves state-of-the-art performance on SimplerEnv with 70.9% success rate, and 12.7% improvement over OpenVLA on LIBERO. Real-world Franka experiments also show the strong performance and robustness.

36 pages, 21 figures
HybridVLA: Collaborative Diffusion and Autoregression in a Unified Vision-Language-Action Model 2025-06-23
Show

A fundamental objective of manipulation policy design is to endow robots to comprehend human instructions, reason about scene cues, and execute generalized actions in dynamic environments. Recent autoregressive vision-language-action (VLA) methods inherit common-sense reasoning capabilities from vision-language models (VLMs) for next action-token prediction. However, these methods quantize actions into discrete bins, which disrupts the continuity required for precise control. In contrast, existing diffusion-based VLA methods incorporate an additional diffusion head to predict continuous actions solely conditioned on feature representations extracted by the VLM, without fully leveraging the VLM's pretrained reasoning capabilities through token-level generation. To address these limitations, we introduce HybridVLA, a unified framework that absorbs the continuous nature of diffusion-based actions and the contextual reasoning of autoregression within a single large language model. To mitigate interference between the two generation paradigms, we propose a collaborative training recipe that seamlessly incorporates diffusion denoising into the next-token prediction process. With this recipe, we find these two action prediction methods not only reinforce each other but also exhibit varying strength across different tasks. Therefore, we design a collaborative action ensemble mechanism that adaptively fuses both predictions, leading to more robust control. HybridVLA outperforms previous state-of-the-art VLA methods by 14% and 19% in mean success rate on simulation and real-world tasks, respectively, while demonstrating stable manipulation in unseen configurations.

RLRC: Reinforcement Learning-based Recovery for Compressed Vision-Language-Action Models 2025-06-21
Show

Vision-Language-Action models (VLA) have demonstrated remarkable capabilities and promising potential in solving complex robotic manipulation tasks. However, their substantial parameter sizes and high inference latency pose significant challenges for real-world deployment, particularly on resource-constrained robotic platforms. To address this issue, we begin by conducting an extensive empirical study to explore the effectiveness of model compression techniques when applied to VLAs. Building on the insights gained from these preliminary experiments, we propose RLRC, a three-stage recovery method for compressed VLAs, including structured pruning, performance recovery based on SFT and RL, and further quantization. RLRC achieves up to an 8x reduction in memory usage and a 2.3x improvement in inference throughput, while maintaining or even surpassing the original VLA's task success rate. Extensive experiments show that RLRC consistently outperforms existing compression baselines, demonstrating strong potential for on-device deployment of VLAs. Project website: https://rlrc-vla.github.io

VLA-OS: Structuring and Dissecting Planning Representations and Paradigms in Vision-Language-Action Models 2025-06-21
Show

Recent studies on Vision-Language-Action (VLA) models have shifted from the end-to-end action-generation paradigm toward a pipeline involving task planning followed by action generation, demonstrating improved performance on various complex, long-horizon manipulation tasks. However, existing approaches vary significantly in terms of network architectures, planning paradigms, representations, and training data sources, making it challenging for researchers to identify the precise sources of performance gains and components to be further improved. To systematically investigate the impacts of different planning paradigms and representations isolating from network architectures and training data, in this paper, we introduce VLA-OS, a unified VLA architecture series capable of various task planning paradigms, and design a comprehensive suite of controlled experiments across diverse object categories (rigid and deformable), visual modalities (2D and 3D), environments (simulation and real-world), and end-effectors (grippers and dexterous hands). Our results demonstrate that: 1) visually grounded planning representations are generally better than language planning representations; 2) the Hierarchical-VLA paradigm generally achieves superior or comparable performance than other paradigms on task performance, pretraining, generalization ability, scalability, and continual learning ability, albeit at the cost of slower training and inference speeds.

ClutterDexGrasp: A Sim-to-Real System for General Dexterous Grasping in Cluttered Scenes 2025-06-19
Show

Dexterous grasping in cluttered scenes presents significant challenges due to diverse object geometries, occlusions, and potential collisions. Existing methods primarily focus on single-object grasping or grasp-pose prediction without interaction, which are insufficient for complex, cluttered scenes. Recent vision-language-action models offer a potential solution but require extensive real-world demonstrations, making them costly and difficult to scale. To address these limitations, we revisit the sim-to-real transfer pipeline and develop key techniques that enable zero-shot deployment in reality while maintaining robust generalization. We propose ClutterDexGrasp, a two-stage teacher-student framework for closed-loop target-oriented dexterous grasping in cluttered scenes. The framework features a teacher policy trained in simulation using clutter density curriculum learning, incorporating both a geometry and spatially-embedded scene representation and a novel comprehensive safety curriculum, enabling general, dynamic, and safe grasping behaviors. Through imitation learning, we distill the teacher's knowledge into a student 3D diffusion policy (DP3) that operates on partial point cloud observations. To the best of our knowledge, this represents the first zero-shot sim-to-real closed-loop system for target-oriented dexterous grasping in cluttered scenes, demonstrating robust performance across diverse objects and layouts. More details and videos are available at https://clutterdexgrasp.github.io/.

CapsDT: Diffusion-Transformer for Capsule Robot Manipulation 2025-06-19
Show

Vision-Language-Action (VLA) models have emerged as a prominent research area, showcasing significant potential across a variety of applications. However, their performance in endoscopy robotics, particularly endoscopy capsule robots that perform actions within the digestive system, remains unexplored. The integration of VLA models into endoscopy robots allows more intuitive and efficient interactions between human operators and medical devices, improving both diagnostic accuracy and treatment outcomes. In this work, we design CapsDT, a Diffusion Transformer model for capsule robot manipulation in the stomach. By processing interleaved visual inputs, and textual instructions, CapsDT can infer corresponding robotic control signals to facilitate endoscopy tasks. In addition, we developed a capsule endoscopy robot system, a capsule robot controlled by a robotic arm-held magnet, addressing different levels of four endoscopy tasks and creating corresponding capsule robot datasets within the stomach simulator. Comprehensive evaluations on various robotic tasks indicate that CapsDT can serve as a robust vision-language generalist, achieving state-of-the-art performance in various levels of endoscopy tasks while achieving a 26.25% success rate in real-world simulation manipulation.

IROS 2025
ControlVLA: Few-shot Object-centric Adaptation for Pre-trained Vision-Language-Action Models 2025-06-19
Show

Learning real-world robotic manipulation is challenging, particularly when limited demonstrations are available. Existing methods for few-shot manipulation often rely on simulation-augmented data or pre-built modules like grasping and pose estimation, which struggle with sim-to-real gaps and lack extensibility. While large-scale imitation pre-training shows promise, adapting these general-purpose policies to specific tasks in data-scarce settings remains unexplored. To achieve this, we propose ControlVLA, a novel framework that bridges pre-trained VLA models with object-centric representations via a ControlNet-style architecture for efficient fine-tuning. Specifically, to introduce object-centric conditions without overwriting prior knowledge, ControlVLA zero-initializes a set of projection layers, allowing them to gradually adapt the pre-trained manipulation policies. In real-world experiments across 6 diverse tasks, including pouring cubes and folding clothes, our method achieves a 76.7% success rate while requiring only 10-20 demonstrations -- a significant improvement over traditional approaches that require more than 100 demonstrations to achieve comparable success. Additional experiments highlight ControlVLA's extensibility to long-horizon tasks and robustness to unseen objects and backgrounds.

Websi...

Website: https://controlvla.github.io

SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration 2025-06-19
Show

Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities. However, their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation. Existing VLA acceleration methods primarily focus on structural optimization, overlooking the fact that these models operate in sequential decision-making environments. As a result, temporal redundancy in sequential action generation and spatial redundancy in visual input remain unaddressed. To this end, we propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens. Specifically, we design an action-aware model scheduling mechanism that reduces temporal redundancy by dynamically switching between VLA model and a lightweight generator. Inspired by the human motion pattern of focusing on key decision points while relying on intuition for other actions, we categorize VLA actions into deliberative and intuitive, assigning the former to the VLA model and the latter to the lightweight generator, enabling frequency-adaptive execution through collaborative model scheduling. To address spatial redundancy, we further develop a spatio-semantic dual-aware token pruning method. Tokens are classified into spatial and semantic types and pruned based on their dual-aware importance to accelerate VLA inference. These two mechanisms work jointly to guide the VLA in focusing on critical actions and salient visual information, achieving effective acceleration while maintaining high accuracy. Experimental results demonstrate that our method achieves up to 1.5$\times$ acceleration with less than 3% drop in accuracy, outperforming existing approaches in multiple tasks.

LeVERB: Humanoid Whole-Body Control with Latent Vision-Language Instruction 2025-06-19
Show

Vision-language-action (VLA) models have demonstrated strong semantic understanding and zero-shot generalization, yet most existing systems assume an accurate low-level controller with hand-crafted action "vocabulary" such as end-effector pose or root velocity. This assumption confines prior work to quasi-static tasks and precludes the agile, whole-body behaviors required by humanoid whole-body control (WBC) tasks. To capture this gap in the literature, we start by introducing the first sim-to-real-ready, vision-language, closed-loop benchmark for humanoid WBC, comprising over 150 tasks from 10 categories. We then propose LeVERB: Latent Vision-Language-Encoded Robot Behavior, a hierarchical latent instruction-following framework for humanoid vision-language WBC, the first of its kind. At the top level, a vision-language policy learns a latent action vocabulary from synthetically rendered kinematic demonstrations; at the low level, a reinforcement-learned WBC policy consumes these latent verbs to generate dynamics-level commands. In our benchmark, LeVERB can zero-shot attain a 80% success rate on simple visual navigation tasks, and 58.5% success rate overall, outperforming naive hierarchical whole-body VLA implementation by 7.8 times.

https...

https://ember-lab-berkeley.github.io/LeVERB-Website/

A Comprehensive Survey on Continual Learning in Generative Models 2025-06-19
Show

The rapid advancement of generative models has enabled modern AI systems to comprehend and produce highly sophisticated content, even achieving human-level performance in specific domains. However, these models remain fundamentally constrained by catastrophic forgetting - a persistent challenge where adapting to new tasks typically leads to significant degradation in performance on previously learned tasks. To address this practical limitation, numerous approaches have been proposed to enhance the adaptability and scalability of generative models in real-world applications. In this work, we present a comprehensive survey of continual learning methods for mainstream generative models, including large language models, multimodal large language models, vision language action models, and diffusion models. Drawing inspiration from the memory mechanisms of the human brain, we systematically categorize these approaches into three paradigms: architecture-based, regularization-based, and replay-based methods, while elucidating their underlying methodologies and motivations. We further analyze continual learning setups for different generative models, including training objectives, benchmarks, and core backbones, offering deeper insights into the field. The project page of this paper is available at https://github.com/Ghy0501/Awesome-Continual-Learning-in-Generative-Models.

Preprint
An Open-Source Software Toolkit & Benchmark Suite for the Evaluation and Adaptation of Multimodal Action Models 2025-06-17
Show

Recent innovations in multimodal action models represent a promising direction for developing general-purpose agentic systems, combining visual understanding, language comprehension, and action generation. We introduce MultiNet - a novel, fully open-source benchmark and surrounding software ecosystem designed to rigorously evaluate and adapt models across vision, language, and action domains. We establish standardized evaluation protocols for assessing vision-language models (VLMs) and vision-language-action models (VLAs), and provide open source software to download relevant data, models, and evaluations. Additionally, we provide a composite dataset with over 1.3 trillion tokens of image captioning, visual question answering, commonsense reasoning, robotic control, digital game-play, simulated locomotion/manipulation, and many more tasks. The MultiNet benchmark, framework, toolkit, and evaluation harness have been used in downstream research on the limitations of VLA generalization.

ICML ...

ICML CodeML Workshop, 13 Pages, 6 Figures, 2 Tables

Benchmarking Vision, Language, & Action Models in Procedurally Generated, Open Ended Action Environments 2025-06-17
Show

Vision-language-action (VLA) models represent an important step toward general-purpose robotic systems by integrating visual perception, language understanding, and action execution. However, systematic evaluation of these models, particularly their zero-shot generalization capabilities in procedurally out-of-distribution (OOD) environments, remains limited. In this paper, we introduce MultiNet v0.2, a comprehensive benchmark designed to evaluate and analyze the generalization performance of state-of-the-art VLMs and VLAs - including GPT-4o, GPT-4.1, OpenVLA, Pi0 Base, and Pi0 FAST - on diverse procedural tasks from the Procgen benchmark. Our analysis reveals several critical insights: (1) all evaluated models exhibit significant limitations in zero-shot generalization to OOD tasks, with performance heavily influenced by factors such as action representation and task complexity; (2) VLAs generally outperforms other models due to their robust architectural design; and (3) VLM variants demonstrate substantial improvements when constrained appropriately, highlighting the sensitivity of model performance to precise prompt engineering. We release our benchmark, evaluation framework, and findings to enable the assessment of future VLA models and identify critical areas for improvement in their application to out-of-distribution digital tasks.

16 pages, 26 figures
GRaD-Nav++: Vision-Language Model Enabled Visual Drone Navigation with Gaussian Radiance Fields and Differentiable Dynamics 2025-06-16
Show

Autonomous drones capable of interpreting and executing high-level language instructions in unstructured environments remain a long-standing goal. Yet existing approaches are constrained by their dependence on hand-crafted skills, extensive parameter tuning, or computationally intensive models unsuitable for onboard use. We introduce GRaD-Nav++, a lightweight Vision-Language-Action (VLA) framework that runs fully onboard and follows natural-language commands in real time. Our policy is trained in a photorealistic 3D Gaussian Splatting (3DGS) simulator via Differentiable Reinforcement Learning (DiffRL), enabling efficient learning of low-level control from visual and linguistic inputs. At its core is a Mixture-of-Experts (MoE) action head, which adaptively routes computation to improve generalization while mitigating forgetting. In multi-task generalization experiments, GRaD-Nav++ achieves a success rate of 83% on trained tasks and 75% on unseen tasks in simulation. When deployed on real hardware, it attains 67% success on trained tasks and 50% on unseen ones. In multi-environment adaptation experiments, GRaD-Nav++ achieves an average success rate of 81% across diverse simulated environments and 67% across varied real-world settings. These results establish a new benchmark for fully onboard Vision-Language-Action (VLA) flight and demonstrate that compact, efficient models can enable reliable, language-guided navigation without relying on external infrastructure.

AutoVLA: A Vision-Language-Action Model for End-to-End Autonomous Driving with Adaptive Reasoning and Reinforcement Fine-Tuning 2025-06-16
Show

Recent advancements in Vision-Language-Action (VLA) models have shown promise for end-to-end autonomous driving by leveraging world knowledge and reasoning capabilities. However, current VLA models often struggle with physically infeasible action outputs, complex model structures, or unnecessarily long reasoning. In this paper, we propose AutoVLA, a novel VLA model that unifies reasoning and action generation within a single autoregressive generation model for end-to-end autonomous driving. AutoVLA performs semantic reasoning and trajectory planning directly from raw visual inputs and language instructions. We tokenize continuous trajectories into discrete, feasible actions, enabling direct integration into the language model. For training, we employ supervised fine-tuning to equip the model with dual thinking modes: fast thinking (trajectory-only) and slow thinking (enhanced with chain-of-thought reasoning). To further enhance planning performance and efficiency, we introduce a reinforcement fine-tuning method based on Group Relative Policy Optimization (GRPO), reducing unnecessary reasoning in straightforward scenarios. Extensive experiments across real-world and simulated datasets and benchmarks, including nuPlan, nuScenes, Waymo, and CARLA, demonstrate the competitive performance of AutoVLA in both open-loop and closed-loop settings. Qualitative results showcase the adaptive reasoning and accurate planning capabilities of AutoVLA in diverse scenarios.

Websi...

Website link:https://autovla.github.io/

CEED-VLA: Consistency Vision-Language-Action Model with Early-Exit Decoding 2025-06-16
Show

In recent years, Vision-Language-Action (VLA) models have become a vital research direction in robotics due to their impressive multimodal understanding and generalization capabilities. Despite the progress, their practical deployment is severely constrained by inference speed bottlenecks, particularly in high-frequency and dexterous manipulation tasks. While recent studies have explored Jacobi decoding as a more efficient alternative to traditional autoregressive decoding, its practical benefits are marginal due to the lengthy iterations. To address it, we introduce consistency distillation training to predict multiple correct action tokens in each iteration, thereby achieving acceleration. Besides, we design mixed-label supervision to mitigate the error accumulation during distillation. Although distillation brings acceptable speedup, we identify that certain inefficient iterations remain a critical bottleneck. To tackle this, we propose an early-exit decoding strategy that moderately relaxes convergence conditions, which further improves average inference efficiency. Experimental results show that the proposed method achieves more than 4 times inference acceleration across different baselines while maintaining high task success rates in both simulated and real-world robot tasks. These experiments validate that our approach provides an efficient and general paradigm for accelerating multimodal decision-making in robotics. Our project page is available at https://irpn-eai.github.io/CEED-VLA/.

16 pages
ROSA: Harnessing Robot States for Vision-Language and Action Alignment 2025-06-16
Show

Vision-Language-Action (VLA) models have recently made significant advance in multi-task, end-to-end robotic control, due to the strong generalization capabilities of Vision-Language Models (VLMs). A fundamental challenge in developing such models is effectively aligning the vision-language space with the robotic action space. Existing approaches typically rely on directly fine-tuning VLMs using expert demonstrations. However, this strategy suffers from a spatio-temporal gap, resulting in considerable data inefficiency and heavy reliance on human labor. Spatially, VLMs operate within a high-level semantic space, whereas robotic actions are grounded in low-level 3D physical space; temporally, VLMs primarily interpret the present, while VLA models anticipate future actions. To overcome these challenges, we propose a novel training paradigm, ROSA, which leverages robot state estimation to improve alignment between vision-language and action spaces. By integrating robot state estimation data obtained via an automated process, ROSA enables the VLA model to gain enhanced spatial understanding and self-awareness, thereby boosting performance and generalization. Extensive experiments in both simulated and real-world environments demonstrate the effectiveness of ROSA, particularly in low-data regimes.

Block-wise Adaptive Caching for Accelerating Diffusion Policy 2025-06-16
Show

Diffusion Policy has demonstrated strong visuomotor modeling capabilities, but its high computational cost renders it impractical for real-time robotic control. Despite huge redundancy across repetitive denoising steps, existing diffusion acceleration techniques fail to generalize to Diffusion Policy due to fundamental architectural and data divergences. In this paper, we propose Block-wise Adaptive Caching(BAC), a method to accelerate Diffusion Policy by caching intermediate action features. BAC achieves lossless action generation acceleration by adaptively updating and reusing cached features at the block level, based on a key observation that feature similarities vary non-uniformly across timesteps and locks. To operationalize this insight, we first propose the Adaptive Caching Scheduler, designed to identify optimal update timesteps by maximizing the global feature similarities between cached and skipped features. However, applying this scheduler for each block leads to signiffcant error surges due to the inter-block propagation of caching errors, particularly within Feed-Forward Network (FFN) blocks. To mitigate this issue, we develop the Bubbling Union Algorithm, which truncates these errors by updating the upstream blocks with signiffcant caching errors before downstream FFNs. As a training-free plugin, BAC is readily integrable with existing transformer-based Diffusion Policy and vision-language-action models. Extensive experiments on multiple robotic benchmarks demonstrate that BAC achieves up to 3x inference speedup for free.

Agentic Surgical AI: Surgeon Style Fingerprinting and Privacy Risk Quantification via Discrete Diffusion in a Vision-Language-Action Framework 2025-06-14
Show

Surgeons exhibit distinct operating styles shaped by training, experience, and motor behavior-yet most surgical AI systems overlook this personalization signal. We propose a novel agentic modeling approach for surgeon-specific behavior prediction in robotic surgery, combining a discrete diffusion framework with a vision-language-action (VLA) pipeline. Gesture prediction is framed as a structured sequence denoising task, conditioned on multimodal inputs including surgical video, intent language, and personalized embeddings of surgeon identity and skill. These embeddings are encoded through natural language prompts using third-party language models, allowing the model to retain individual behavioral style without exposing explicit identity. We evaluate our method on the JIGSAWS dataset and demonstrate that it accurately reconstructs gesture sequences while learning meaningful motion fingerprints unique to each surgeon. To quantify the privacy implications of personalization, we perform membership inference attacks and find that more expressive embeddings improve task performance but simultaneously increase susceptibility to identity leakage. These findings demonstrate that while personalized embeddings improve performance, they also increase vulnerability to identity leakage, revealing the importance of balancing personalization with privacy risk in surgical modeling. Code is available at: https://github.com/huixin-zhan-ai/Surgeon_style_fingerprinting.

RationalVLA: A Rational Vision-Language-Action Model with Dual System 2025-06-13
Show

A fundamental requirement for real-world robotic deployment is the ability to understand and respond to natural language instructions. Existing language-conditioned manipulation tasks typically assume that instructions are perfectly aligned with the environment. This assumption limits robustness and generalization in realistic scenarios where instructions may be ambiguous, irrelevant, or infeasible. To address this problem, we introduce RAtional MAnipulation (RAMA), a new benchmark that challenges models with both unseen executable instructions and defective ones that should be rejected. In RAMA, we construct a dataset with over 14,000 samples, including diverse defective instructions spanning six dimensions: visual, physical, semantic, motion, safety, and out-of-context. We further propose the Rational Vision-Language-Action model (RationalVLA). It is a dual system for robotic arms that integrates the high-level vision-language model with the low-level manipulation policy by introducing learnable latent space embeddings. This design enables RationalVLA to reason over instructions, reject infeasible commands, and execute manipulation effectively. Experiments demonstrate that RationalVLA outperforms state-of-the-art baselines on RAMA by a 14.5% higher success rate and 0.94 average task length, while maintaining competitive performance on standard manipulation tasks. Real-world trials further validate its effectiveness and robustness in practical applications. Our project page is https://irpn-eai.github.io/RationalVLA.

14 pages
Robotic Policy Learning via Human-assisted Action Preference Optimization 2025-06-12
Show

Establishing a reliable and iteratively refined robotic system is essential for deploying real-world applications. While Vision-Language-Action (VLA) models are widely recognized as the foundation model for such robotic deployment, their dependence on expert demonstrations hinders the crucial capabilities of correction and learning from failures. To mitigate this limitation, we introduce a Human-assisted Action Preference Optimization method named HAPO, designed to correct deployment failures and foster effective adaptation through preference alignment for VLA models. This method begins with a human-robot collaboration framework for reliable failure correction and interaction trajectory collection through human intervention. These human-intervention trajectories are further employed within the action preference optimization process, facilitating VLA models to mitigate failure action occurrences while enhancing corrective action adaptation. Specifically, we propose an adaptive reweighting algorithm to address the issues of irreversible interactions and token probability mismatch when introducing preference optimization into VLA models, facilitating model learning from binary desirability signals derived from interactions. Through combining these modules, our human-assisted action preference optimization method ensures reliable deployment and effective learning from failure for VLA models. The experiments conducted in simulation and real-world scenarios prove superior generalization and robustness of our framework across a variety of manipulation tasks.

EfficientVLA: Training-Free Acceleration and Compression for Vision-Language-Action Models 2025-06-11
Show

Vision-Language-Action (VLA) models, particularly diffusion-based architectures, demonstrate transformative potential for embodied intelligence but are severely hampered by high computational and memory demands stemming from extensive inherent and inference-time redundancies. While existing acceleration efforts often target isolated inefficiencies, such piecemeal solutions typically fail to holistically address the varied computational and memory bottlenecks across the entire VLA pipeline, thereby limiting practical deployability. We introduce EfficientVLA, a structured and training-free inference acceleration framework that systematically eliminates these barriers by cohesively exploiting multifaceted redundancies. EfficientVLA synergistically integrates three targeted strategies: (1) pruning of functionally inconsequential layers from the language module, guided by an analysis of inter-layer redundancies; (2) optimizing the visual processing pathway through a task-aware strategy that selects a compact, diverse set of visual tokens, balancing task-criticality with informational coverage; and (3) alleviating temporal computational redundancy within the iterative diffusion-based action head by strategically caching and reusing key intermediate features. We apply our method to a standard VLA model CogACT, yielding a 1.93X inference speedup and reduces FLOPs to 28.9%, with only a 0.6% success rate drop in the SIMPLER benchmark.

SAFE: Multitask Failure Detection for Vision-Language-Action Models 2025-06-11
Show

While vision-language-action models (VLAs) have shown promising robotic behaviors across a diverse set of manipulation tasks, they achieve limited success rates when deployed on novel tasks out-of-the-box. To allow these policies to safely interact with their environments, we need a failure detector that gives a timely alert such that the robot can stop, backtrack, or ask for help. However, existing failure detectors are trained and tested only on one or a few specific tasks, while VLAs require the detector to generalize and detect failures also in unseen tasks and novel environments. In this paper, we introduce the multitask failure detection problem and propose SAFE, a failure detector for generalist robot policies such as VLAs. We analyze the VLA feature space and find that VLAs have sufficient high-level knowledge about task success and failure, which is generic across different tasks. Based on this insight, we design SAFE to learn from VLA internal features and predict a single scalar indicating the likelihood of task failure. SAFE is trained on both successful and failed rollouts, and is evaluated on unseen tasks. SAFE is compatible with different policy architectures. We test it on OpenVLA, $\pi_0$, and $\pi_0$-FAST in both simulated and real-world environments extensively. We compare SAFE with diverse baselines and show that SAFE achieves state-of-the-art failure detection performance and the best trade-off between accuracy and detection time using conformal prediction. More qualitative results can be found at https://vla-safe.github.io/.

Proje...

Project Page: https://vla-safe.github.io/

From Intention to Execution: Probing the Generalization Boundaries of Vision-Language-Action Models 2025-06-11
Show

One promise that Vision-Language-Action (VLA) models hold over traditional imitation learning for robotics is to leverage the broad generalization capabilities of large Vision-Language Models (VLMs) to produce versatile, "generalist" robot policies. However, current evaluations of VLAs remain insufficient. Traditional imitation learning benchmarks are unsuitable due to the lack of language instructions. Emerging benchmarks for VLAs that incorporate language often come with limited evaluation tasks and do not intend to investigate how much VLM pretraining truly contributes to the generalization capabilities of the downstream robotic policy. Meanwhile, much research relies on real-world robot setups designed in isolation by different institutions, which creates a barrier for reproducibility and accessibility. To address this gap, we introduce a unified probing suite of 50 simulation-based tasks across 10 subcategories spanning language instruction, vision, and objects. We systematically evaluate several state-of-the-art VLA architectures on this suite to understand their generalization capability. Our results show that while VLM backbones endow VLAs with robust perceptual understanding and high level planning, which we refer to as good intentions, this does not reliably translate into precise motor execution: when faced with out-of-distribution observations, policies often exhibit coherent intentions, but falter in action execution. Moreover, finetuning on action data can erode the original VLM's generalist reasoning abilities. We release our task suite and evaluation code to serve as a standardized benchmark for future VLAs and to drive research on closing the perception-to-action gap. More information, including the source code, can be found at https://ai4ce.github.io/INT-ACT/

Under review
HiBerNAC: Hierarchical Brain-emulated Robotic Neural Agent Collective for Disentangling Complex Manipulation 2025-06-11
Show

Recent advances in multimodal vision-language-action (VLA) models have revolutionized traditional robot learning, enabling systems to interpret vision, language, and action in unified frameworks for complex task planning. However, mastering complex manipulation tasks remains an open challenge, constrained by limitations in persistent contextual memory, multi-agent coordination under uncertainty, and dynamic long-horizon planning across variable sequences. To address this challenge, we propose \textbf{HiBerNAC}, a \textbf{Hi}erarchical \textbf{B}rain-\textbf{e}mulated \textbf{r}obotic \textbf{N}eural \textbf{A}gent \textbf{C}ollective, inspired by breakthroughs in neuroscience, particularly in neural circuit mechanisms and hierarchical decision-making. Our framework combines: (1) multimodal VLA planning and reasoning with (2) neuro-inspired reflection and multi-agent mechanisms, specifically designed for complex robotic manipulation tasks. By leveraging neuro-inspired functional modules with decentralized multi-agent collaboration, our approach enables robust and enhanced real-time execution of complex manipulation tasks. In addition, the agentic system exhibits scalable collective intelligence via dynamic agent specialization, adapting its coordination strategy to variable task horizons and complexity. Through extensive experiments on complex manipulation tasks compared with state-of-the-art VLA models, we demonstrate that \textbf{HiBerNAC} reduces average long-horizon task completion time by 23%, and achieves non-zero success rates (12\textendash 31%) on multi-path tasks where prior state-of-the-art VLA models consistently fail. These results provide indicative evidence for bridging biological cognition and robotic learning mechanisms.

31 pages,5 figures
What Can RL Bring to VLA Generalization? An Empirical Study 2025-06-11
Show

Large Vision-Language Action (VLA) models have shown significant potential for embodied AI. However, their predominant training via supervised fine-tuning (SFT) limits generalization due to susceptibility to compounding errors under distribution shifts. Reinforcement learning (RL) offers a path to overcome these limitations by optimizing for task objectives via trial-and-error, yet a systematic understanding of its specific generalization benefits for VLAs compared to SFT is lacking. To address this, our study introduces a comprehensive benchmark for evaluating VLA generalization and systematically investigates the impact of RL fine-tuning across diverse visual, semantic, and execution dimensions. Our extensive experiments reveal that RL fine-tuning, particularly with PPO, significantly enhances generalization in semantic understanding and execution robustness over SFT, while maintaining comparable visual robustness. We identify PPO as a more effective RL algorithm for VLAs than LLM-derived methods like DPO and GRPO. We also develop a simple recipe for efficient PPO training on VLAs, and demonstrate its practical utility for improving VLA generalization. The project page is at https://rlvla.github.io

TGRPO :Fine-tuning Vision-Language-Action Model via Trajectory-wise Group Relative Policy Optimization 2025-06-11
Show

Recent advances in Vision-Language-Action (VLA) model have demonstrated strong generalization capabilities across diverse scenes, tasks, and robotic platforms when pretrained at large-scale datasets. However, these models still require task-specific fine-tuning in novel environments, a process that relies almost exclusively on supervised fine-tuning (SFT) using static trajectory datasets. Such approaches neither allow robot to interact with environment nor do they leverage feedback from live execution. Also, their success is critically dependent on the size and quality of the collected trajectories. Reinforcement learning (RL) offers a promising alternative by enabling closed-loop interaction and aligning learned policies directly with task objectives. In this work, we draw inspiration from the ideas of GRPO and propose the Trajectory-wise Group Relative Policy Optimization (TGRPO) method. By fusing step-level and trajectory-level advantage signals, this method improves GRPO's group-level advantage estimation, thereby making the algorithm more suitable for online reinforcement learning training of VLA. Experimental results on ten manipulation tasks from the libero-object benchmark demonstrate that TGRPO consistently outperforms various baseline methods, capable of generating more robust and efficient policies across multiple tested scenarios. Our source codes are available at: https://github.com/hahans/TGRPO

Agentic Robot: A Brain-Inspired Framework for Vision-Language-Action Models in Embodied Agents 2025-06-11
Show

Long-horizon robotic manipulation poses significant challenges for autonomous systems, requiring extended reasoning, precise execution, and robust error recovery across complex sequential tasks. Current approaches, whether based on static planning or end-to-end visuomotor policies, suffer from error accumulation and lack effective verification mechanisms during execution, limiting their reliability in real-world scenarios. We present Agentic Robot, a brain-inspired framework that addresses these limitations through Standardized Action Procedure (SAP)--a novel coordination protocol governing component interactions throughout manipulation tasks. Drawing inspiration from Standardized Operating Procedures (SOPs) in human organizations, SAP establishes structured workflows for planning, execution, and verification phases. Our architecture comprises three specialized components: (1) a large reasoning model that decomposes high-level instructions into semantically coherent subgoals, (2) a vision-language-action executor that generates continuous control commands from real-time visual inputs, and (3) a temporal verifier that enables autonomous progression and error recovery through introspective assessment. This SAP-driven closed-loop design supports dynamic self-verification without external supervision. On the LIBERO benchmark, Agentic Robot achieves state-of-the-art performance with an average success rate of 79.6%, outperforming SpatialVLA by 6.1% and OpenVLA by 7.4% on long-horizon tasks. These results demonstrate that SAP-driven coordination between specialized components enhances both performance and interpretability in sequential manipulation, suggesting significant potential for reliable autonomous systems. Project Github: https://agentic-robot.github.io.

20 pages, 8 figures
Task Reconstruction and Extrapolation for $π_0$ using Text Latent 2025-06-10
Show

Vision-language-action models (VLAs) often achieve high performance on demonstrated tasks but struggle significantly when required to extrapolate, combining skills learned from different tasks in novel ways. For instance, VLAs might successfully put the cream cheese in the bowl and put the bowl on top of the cabinet, yet still fail to put the cream cheese on top of the cabinet. In this work, we demonstrate that behaviors from distinct tasks can be effectively recombined by manipulating the VLA's internal representations at inference time. Concretely, we identify the text latent by averaging the text tokens' hidden states across all demonstrated trajectories for a specific base task. For executing an extrapolated task, we can temporally interpolate the text latent of the two base tasks and add it back to the text hidden states, so sub-behaviors from the two tasks will be activated sequentially. We evaluate this approach using the newly created libero-ood benchmark, featuring 20 tasks extrapolated from standard LIBERO suites. The results on libero-ood show that all SOTA VLAs achieve < 15% success rate, while $\pi0$ with text latent interpolation reaches an 83% success rate. Further qualitative analysis reveals a tendency for VLAs to exhibit spatial overfitting, mapping object names to demonstrated locations rather than achieving genuine object and goal understanding. Additionally, we find that decoding the text latent yields human-unreadable prompts that can nevertheless instruct the VLA to achieve a 70% success rate on standard LIBERO suites, enabling private instruction or backdoor attacks.

FreqPolicy: Efficient Flow-based Visuomotor Policy via Frequency Consistency 2025-06-10
Show

Generative modeling-based visuomotor policies have been widely adopted in robotic manipulation attributed to their ability to model multimodal action distributions. However, the high inference cost of multi-step sampling limits their applicability in real-time robotic systems. To address this issue, existing approaches accelerate the sampling process in generative modeling-based visuomotor policies by adapting acceleration techniques originally developed for image generation. Despite this progress, a major distinction remains: image generation typically involves producing independent samples without temporal dependencies, whereas robotic manipulation involves generating time-series action trajectories that require continuity and temporal coherence. To effectively exploit temporal information in robotic manipulation, we propose FreqPolicy, a novel approach that first imposes frequency consistency constraints on flow-based visuomotor policies. Our work enables the action model to capture temporal structure effectively while supporting efficient, high-quality one-step action generation. We introduce a frequency consistency constraint that enforces alignment of frequency-domain action features across different timesteps along the flow, thereby promoting convergence of one-step action generation toward the target distribution. In addition, we design an adaptive consistency loss to capture structural temporal variations inherent in robotic manipulation tasks. We assess FreqPolicy on 53 tasks across 3 simulation benchmarks, proving its superiority over existing one-step action generators. We further integrate FreqPolicy into the vision-language-action (VLA) model and achieve acceleration without performance degradation on the 40 tasks of Libero. Besides, we show efficiency and effectiveness in real-world robotic scenarios with an inference frequency 93.5Hz. The code will be publicly available.

Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing 2025-06-10
Show

Industrial processes must be robust and adaptable, as environments and tasks are often unpredictable, while operational errors remain costly and difficult to detect. AI-based control systems offer a path forward, yet typically depend on supervised learning with extensive labelled datasets, which limits their ability to generalize across variable and data-scarce industrial settings. Foundation models could enable broader reasoning and knowledge integration, but rarely deliver the quantitative precision demanded by engineering applications. Here, we introduceControl and Interpretation of Production via Hybrid Expertise and Reasoning (CIPHER): a vision-language-action (VLA) model framework aiming to replicate human-like reasoning for industrial control, instantiated in a commercial-grade 3D printer. It integrates a process expert, a regression model enabling quantitative characterization of system states required for engineering tasks. CIPHER also incorporates retrieval-augmented generation to access external expert knowledge and support physics-informed, chain-of-thought reasoning. This hybrid architecture exhibits strong generalization to out-of-distribution tasks. It interprets visual or textual inputs from process monitoring, explains its decisions, and autonomously generates precise machine instructions, without requiring explicit annotations. CIPHER thus lays the foundations for autonomous systems that act with precision, reason with context, and communicate decisions transparently, supporting safe and trusted deployment in industrial settings.

BridgeVLA: Input-Output Alignment for Efficient 3D Manipulation Learning with Vision-Language Models 2025-06-09
Show

Recently, leveraging pre-trained vision-language models (VLMs) for building vision-language-action (VLA) models has emerged as a promising approach to effective robot manipulation learning. However, only few methods incorporate 3D signals into VLMs for action prediction, and they do not fully leverage the spatial structure inherent in 3D data, leading to low sample efficiency. In this paper, we introduce BridgeVLA, a novel 3D VLA model that (1) projects 3D inputs to multiple 2D images, ensuring input alignment with the VLM backbone, and (2) utilizes 2D heatmaps for action prediction, unifying the input and output spaces within a consistent 2D image space. In addition, we propose a scalable pre-training method that equips the VLM backbone with the capability to predict 2D heatmaps before downstream policy learning. Extensive experiments show the proposed method is able to learn 3D manipulation efficiently and effectively. BridgeVLA outperforms state-of-the-art baseline methods across three simulation benchmarks. In RLBench, it improves the average success rate from 81.4% to 88.2%. In COLOSSEUM, it demonstrates significantly better performance in challenging generalization settings, boosting the average success rate from 56.7% to 64.0%. In GemBench, it surpasses all the comparing baseline methods in terms of average success rate. In real-robot experiments, BridgeVLA outperforms a state-of-the-art baseline method by 32% on average. It generalizes robustly in multiple out-of-distribution settings, including visual disturbances and unseen instructions. Remarkably, it is able to achieve a success rate of 96.8% on 10+ tasks with only 3 trajectories per task, highlighting its extraordinary sample efficiency. Project Website:https://bridgevla.github.io/

In Submission
Fast ECoT: Efficient Embodied Chain-of-Thought via Thoughts Reuse 2025-06-09
Show

Embodied Chain-of-Thought (ECoT) reasoning enhances vision-language-action (VLA) models by improving performance and interpretability through intermediate reasoning steps. However, its sequential autoregressive token generation introduces significant inference latency, limiting real-time deployment. We propose Fast ECoT, an inference-time acceleration method that exploits the structured and repetitive nature of ECoT to (1) cache and reuse high-level reasoning across timesteps and (2) parallelise the generation of modular reasoning steps. Additionally, we introduce an asynchronous scheduler that decouples reasoning from action decoding, further boosting responsiveness. Fast ECoT requires no model changes or additional training and integrates easily into existing VLA pipelines. Experiments in both simulation (LIBERO) and real-world robot tasks show up to a 7.5% reduction in latency with comparable or improved task success rate and reasoning faithfulness, bringing ECoT policies closer to practical real-time deployment.

BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation 2025-06-09
Show

Vision-Language-Action (VLA) models have shown impressive capabilities across a wide range of robotics manipulation tasks. However, their growing model size poses significant challenges for deployment on resource-constrained robotic systems. While 1-bit pretraining has proven effective for enhancing the inference efficiency of large language models with minimal performance loss, its application to VLA models remains underexplored. In this work, we present BitVLA, the first 1-bit VLA model for robotics manipulation, in which every parameter is ternary, i.e., {-1, 0, 1}. To further reduce the memory footprint of the vision encoder, we propose the distillation-aware training strategy that compresses the full-precision encoder to 1.58-bit weights. During this process, a full-precision encoder serves as a teacher model to better align latent representations. Despite the lack of large-scale robotics pretraining, BitVLA achieves performance comparable to the state-of-the-art model OpenVLA-OFT with 4-bit post-training quantization on the LIBERO benchmark, while consuming only 29.8% of the memory. These results highlight BitVLA's promise for deployment on memory-constrained edge devices. We release the code and model weights in https://github.com/ustcwhy/BitVLA.

Work in progress
Real-Time Execution of Action Chunking Flow Policies 2025-06-09
Show

Modern AI systems, especially those interacting with the physical world, increasingly require real-time performance. However, the high latency of state-of-the-art generalist models, including recent vision-language action models (VLAs), poses a significant challenge. While action chunking has enabled temporal consistency in high-frequency control tasks, it does not fully address the latency problem, leading to pauses or out-of-distribution jerky movements at chunk boundaries. This paper presents a novel inference-time algorithm that enables smooth asynchronous execution of action chunking policies. Our method, real-time chunking (RTC), is applicable to any diffusion- or flow-based VLA out of the box with no re-training. It generates the next action chunk while executing the current one, "freezing" actions guaranteed to execute and "inpainting" the rest. To test RTC, we introduce a new benchmark of 12 highly dynamic tasks in the Kinetix simulator, as well as evaluate 6 challenging real-world bimanual manipulation tasks. Results demonstrate that RTC is fast, performant, and uniquely robust to inference delay, significantly improving task throughput and enabling high success rates in precise tasks $\unicode{x2013}$ such as lighting a match $\unicode{x2013}$ even in the presence of significant latency. See https://pi.website/research/real_time_chunking for videos.

RoboCerebra: A Large-scale Benchmark for Long-horizon Robotic Manipulation Evaluation 2025-06-07
Show

Recent advances in vision-language models (VLMs) have enabled instruction-conditioned robotic systems with improved generalization. However, most existing work focuses on reactive System 1 policies, underutilizing VLMs' strengths in semantic reasoning and long-horizon planning. These System 2 capabilities-characterized by deliberative, goal-directed thinking-remain under explored due to the limited temporal scale and structural complexity of current benchmarks. To address this gap, we introduce RoboCerebra, a benchmark for evaluating high-level reasoning in long-horizon robotic manipulation. RoboCerebra includes: (1) a large-scale simulation dataset with extended task horizons and diverse subtask sequences in household environments; (2) a hierarchical framework combining a high-level VLM planner with a low-level vision-language-action (VLA) controller; and (3) an evaluation protocol targeting planning, reflection, and memory through structured System 1-System 2 interaction. The dataset is constructed via a top-down pipeline, where GPT generates task instructions and decomposes them into subtask sequences. Human operators execute the subtasks in simulation, yielding high-quality trajectories with dynamic object variations. Compared to prior benchmarks, RoboCerebra features significantly longer action sequences and denser annotations. We further benchmark state-of-the-art VLMs as System 2 modules and analyze their performance across key cognitive dimensions, advancing the development of more capable and generalizable robotic planners.

23 pages, 18 figures
MapleGrasp: Mask-guided Feature Pooling for Language-driven Efficient Robotic Grasping 2025-06-06
Show

Robotic manipulation of unseen objects via natural language commands remains challenging. Language driven robotic grasping (LDRG) predicts stable grasp poses from natural language queries and RGB-D images. Here we introduce Mask-guided feature pooling, a lightweight enhancement to existing LDRG methods. Our approach employs a two-stage training strategy: first, a vision-language model generates feature maps from CLIP-fused embeddings, which are upsampled and weighted by text embeddings to produce segmentation masks. Next, the decoder generates separate feature maps for grasp prediction, pooling only token features within these masked regions to efficiently predict grasp poses. This targeted pooling approach reduces computational complexity, accelerating both training and inference. Incorporating mask pooling results in a 12% improvement over prior approaches on the OCID-VLG benchmark. Furthermore, we introduce RefGraspNet, an open-source dataset eight times larger than existing alternatives, significantly enhancing model generalization for open-vocabulary grasping. By extending 2D grasp predictions to 3D via depth mapping and inverse kinematics, our modular method achieves performance comparable to recent Vision-Language-Action (VLA) models on the LIBERO simulation benchmark, with improved generalization across different task suites. Real-world experiments on a 7 DoF Franka robotic arm demonstrate a 57% success rate with unseen objects, surpassing competitive baselines by 7%. Code will be released post publication.

DriveAction: A Benchmark for Exploring Human-like Driving Decisions in VLA Models 2025-06-06
Show

Vision-Language-Action (VLA) models have advanced autonomous driving, but existing benchmarks still lack scenario diversity, reliable action-level annotation, and evaluation protocols aligned with human preferences. To address these limitations, we introduce DriveAction, the first action-driven benchmark specifically designed for VLA models, comprising 16,185 QA pairs generated from 2,610 driving scenarios. DriveAction leverages real-world driving data proactively collected by users of production-level autonomous vehicles to ensure broad and representative scenario coverage, offers high-level discrete action labels collected directly from users' actual driving operations, and implements an action-rooted tree-structured evaluation framework that explicitly links vision, language, and action tasks, supporting both comprehensive and task-specific assessment. Our experiments demonstrate that state-of-the-art vision-language models (VLMs) require both vision and language guidance for accurate action prediction: on average, accuracy drops by 3.3% without vision input, by 4.1% without language input, and by 8.0% without either. Our evaluation supports precise identification of model bottlenecks with robust and consistent results, thus providing new insights and a rigorous foundation for advancing human-like decisions in autonomous driving.

Bench...

Benchmark: https://huggingface.co/datasets/LiAuto-DriveAction/drive-action

TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies 2025-06-05
Show

Although large vision-language-action (VLA) models pretrained on extensive robot datasets offer promising generalist policies for robotic learning, they still struggle with spatial-temporal dynamics in interactive robotics, making them less effective in handling complex tasks, such as manipulation. In this work, we introduce visual trace prompting, a simple yet effective approach to facilitate VLA models' spatial-temporal awareness for action prediction by encoding state-action trajectories visually. We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories using visual trace prompting. Evaluations of TraceVLA across 137 configurations in SimplerEnv and 4 tasks on a physical WidowX robot demonstrate state-of-the-art performance, outperforming OpenVLA by 10% on SimplerEnv and 3.5x on real-robot tasks and exhibiting robust generalization across diverse embodiments and scenarios. To further validate the effectiveness and generality of our method, we present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset, rivals the 7B OpenVLA baseline while significantly improving inference efficiency.

SwitchVLA: Execution-Aware Task Switching for Vision-Language-Action Models 2025-06-04
Show

Robots deployed in dynamic environments must be able to not only follow diverse language instructions but flexibly adapt when user intent changes mid-execution. While recent Vision-Language-Action (VLA) models have advanced multi-task learning and instruction following, they typically assume static task intent, failing to respond when new instructions arrive during ongoing execution. This limitation hinders natural and robust interaction in dynamic settings, such as retail or household environments, where real-time intent changes are common. We propose SwitchVLA, a unified, execution-aware framework that enables smooth and reactive task switching without external planners or additional switch-specific data. We model task switching as a behavior modulation problem conditioned on execution state and instruction context. Expert demonstrations are segmented into temporally grounded contact phases, allowing the policy to infer task progress and adjust its behavior accordingly. A multi-behavior conditional policy is then trained to generate flexible action chunks under varying behavior modes through conditioned trajectory modeling. Experiments in both simulation and real-world robotic manipulation demonstrate that SwitchVLA enables robust instruction adherence, fluid task switching, and strong generalization-outperforming prior VLA baselines in both task success rate and interaction naturalness.

Websi...

Website: https://switchvla.github.io

Adversarial Attacks on Robotic Vision Language Action Models 2025-06-03
Show

The emergence of vision-language-action models (VLAs) for end-to-end control is reshaping the field of robotics by enabling the fusion of multimodal sensory inputs at the billion-parameter scale. The capabilities of VLAs stem primarily from their architectures, which are often based on frontier large language models (LLMs). However, LLMs are known to be susceptible to adversarial misuse, and given the significant physical risks inherent to robotics, questions remain regarding the extent to which VLAs inherit these vulnerabilities. Motivated by these concerns, in this work we initiate the study of adversarial attacks on VLA-controlled robots. Our main algorithmic contribution is the adaptation and application of LLM jailbreaking attacks to obtain complete control authority over VLAs. We find that textual attacks, which are applied once at the beginning of a rollout, facilitate full reachability of the action space of commonly used VLAs and often persist over longer horizons. This differs significantly from LLM jailbreaking literature, as attacks in the real world do not have to be semantically linked to notions of harm. We make all code available at https://github.com/eliotjones1/robogcg .

Fast-in-Slow: A Dual-System Foundation Model Unifying Fast Manipulation within Slow Reasoning 2025-06-02
Show

Generalized policy and execution efficiency constitute the two critical challenges in robotic manipulation. While recent foundation policies benefit from the common-sense reasoning capabilities of internet-scale pretrained vision-language models (VLMs), they often suffer from low execution frequency. To mitigate this dilemma, dual-system approaches, inspired by Kahneman's theory, have been proposed to leverage a VLM-based System 2 model handling high-level reasoning and a separate System 1 action model ensuring real-time control. However, existing designs maintain both systems as separate models, limiting System 1 from fully leveraging the rich pretrained knowledge from the VLM-based System 2. In this work, we propose Fast-in-Slow (FiS), a unified dual-system vision-language-action (VLA) model that embeds the System 1 execution module within the VLM-based System 2 by partially sharing parameters. This innovative paradigm not only enables high-frequency execution in System 1 but also facilitates coordination between the reasoning and execution components within a single foundation model of System 2. Given their fundamentally distinct roles within FiS-VLA, we design the two systems to incorporate heterogeneous modality inputs alongside asynchronous operating frequencies, enabling both fast and precise manipulation. To enable coordination between the two systems, a dual-aware co-training strategy is proposed that equips System 1 with action generation capabilities while preserving System 2's contextual reasoning representation. For evaluation, FiS-VLA outperforms previous state-of-the-art methods by 8% in simulation and 11% in real-world tasks in terms of average success rate, while achieving a 117.7 Hz control frequency with action chunk set to eight. Project web page: fast-in-slow.github.io.

SmolVLA: A Vision-Language-Action Model for Affordable and Efficient Robotics 2025-06-02
Show

Vision-language models (VLMs) pretrained on large-scale multimodal datasets encode rich visual and linguistic knowledge, making them a strong foundation for robotics. Rather than training robotic policies from scratch, recent approaches adapt VLMs into vision-language-action (VLA) models that enable natural language-driven perception and control. However, existing VLAs are typically massive--often with billions of parameters--leading to high training costs and limited real-world deployability. Moreover, they rely on academic and industrial datasets, overlooking the growing availability of community-collected data from affordable robotic platforms. In this work, we present SmolVLA, a small, efficient, and community-driven VLA that drastically reduces both training and inference costs, while retaining competitive performance. SmolVLA is designed to be trained on a single GPU and deployed on consumer-grade GPUs or even CPUs. To further improve responsiveness, we introduce an asynchronous inference stack decoupling perception and action prediction from action execution, allowing higher control rates with chunked action generation. Despite its compact size, SmolVLA achieves performance comparable to VLAs that are 10x larger. We evaluate SmolVLA on a range of both simulated as well as real-world robotic benchmarks and release all code, pretrained models, and training data.

24 pa...

24 pages. Code and assets: https://github.com/huggingface/lerobot

Survey on Vision-Language-Action Models 2025-06-02
Show

This paper presents an AI-generated review of Vision-Language-Action (VLA) models, summarizing key methodologies, findings, and future directions. The content is produced using large language models (LLMs) and is intended only for demonstration purposes. This work does not represent original research, but highlights how AI can help automate literature reviews. As AI-generated content becomes more prevalent, ensuring accuracy, reliability, and proper synthesis remains a challenge. Future research will focus on developing a structured framework for AI-assisted literature reviews, exploring techniques to enhance citation accuracy, source credibility, and contextual understanding. By examining the potential and limitations of LLM in academic writing, this study aims to contribute to the broader discussion of integrating AI into research workflows. This work serves as a preliminary step toward establishing systematic approaches for leveraging AI in literature review generation, making academic knowledge synthesis more efficient and scalable.

arXiv...

arXiv admin note: This submission has been withdrawn due to serious violation of arXiv policies for acceptable submissions

MLA-Trust: Benchmarking Trustworthiness of Multimodal LLM Agents in GUI Environments 2025-06-02
Show

The emergence of multimodal LLM-based agents (MLAs) has transformed interaction paradigms by seamlessly integrating vision, language, action and dynamic environments, enabling unprecedented autonomous capabilities across GUI applications ranging from web automation to mobile systems. However, MLAs introduce critical trustworthiness challenges that extend far beyond traditional language models' limitations, as they can directly modify digital states and trigger irreversible real-world consequences. Existing benchmarks inadequately tackle these unique challenges posed by MLAs' actionable outputs, long-horizon uncertainty and multimodal attack vectors. In this paper, we introduce MLA-Trust, the first comprehensive and unified framework that evaluates the MLA trustworthiness across four principled dimensions: truthfulness, controllability, safety and privacy. We utilize websites and mobile applications as realistic testbeds, designing 34 high-risk interactive tasks and curating rich evaluation datasets. Large-scale experiments involving 13 state-of-the-art agents reveal previously unexplored trustworthiness vulnerabilities unique to multimodal interactive scenarios. For instance, proprietary and open-source GUI-interacting MLAs pose more severe trustworthiness risks than static MLLMs, particularly in high-stakes domains; the transition from static MLLMs into interactive MLAs considerably compromises trustworthiness, enabling harmful content generation in multi-step interactions that standalone MLLMs would typically prevent; multi-step execution, while enhancing the adaptability of MLAs, involves latent nonlinear risk accumulation across successive interactions, circumventing existing safeguards and resulting in unpredictable derived risks. Moreover, we present an extensible toolbox to facilitate continuous evaluation of MLA trustworthiness across diverse interactive environments.

ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding 2025-06-02
Show

Video understanding is fundamental to tasks such as action recognition, video reasoning, and robotic control. Early video understanding methods based on large vision-language models (LVLMs) typically adopt a single-pass reasoning paradigm without dynamic feedback, limiting the model's capacity to self-correct and adapt in complex scenarios. Recent efforts have attempted to address this limitation by incorporating reward models and reinforcement learning to enhance reasoning, or by employing tool-agent frameworks. However, these approaches face several challenges, including high annotation costs, reward signals that fail to capture real-time reasoning states, and low inference efficiency. To overcome these issues, we propose ReAgent-V, a novel agentic video understanding framework that integrates efficient frame selection with real-time reward generation during inference. These reward signals not only guide iterative answer refinement through a multi-perspective reflection mechanism-adjusting predictions from conservative, neutral, and aggressive viewpoints-but also enable automatic filtering of high-quality data for supervised fine-tuning (SFT), direct preference optimization (DPO), and group relative policy optimization (GRPO). ReAgent-V is lightweight, modular, and extensible, supporting flexible tool integration tailored to diverse tasks. Extensive experiments on 12 datasets across three core applications-video understanding, video reasoning enhancement, and vision-language-action model alignment-demonstrate significant gains in generalization and reasoning, with improvements of up to 6.9%, 2.1%, and 9.8%, respectively, highlighting the effectiveness and versatility of the proposed framework.

31 pages, 18 figures
OG-VLA: 3D-Aware Vision Language Action Model via Orthographic Image Generation 2025-06-01
Show

We introduce OG-VLA, a novel architecture and learning framework that combines the generalization strengths of Vision Language Action models (VLAs) with the robustness of 3D-aware policies. We address the challenge of mapping natural language instructions and multi-view RGBD observations to quasi-static robot actions. 3D-aware robot policies achieve state-of-the-art performance on precise robot manipulation tasks, but struggle with generalization to unseen instructions, scenes, and objects. On the other hand, VLAs excel at generalizing across instructions and scenes, but can be sensitive to camera and robot pose variations. We leverage prior knowledge embedded in language and vision foundation models to improve generalization of 3D-aware keyframe policies. OG-VLA projects input observations from diverse views into a point cloud which is then rendered from canonical orthographic views, ensuring input view invariance and consistency between input and output spaces. These canonical views are processed with a vision backbone, a Large Language Model (LLM), and an image diffusion model to generate images that encode the next position and orientation of the end-effector on the input scene. Evaluations on the Arnold and Colosseum benchmarks demonstrate state-of-the-art generalization to unseen environments, with over 40% relative improvements while maintaining robust performance in seen settings. We also show real-world adaption in 3 to 5 demonstrations along with strong generalization. Videos and resources at https://og-vla.github.io/

17 pages
SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Constrained Learning 2025-05-31
Show

Vision-language-action models (VLAs) show potential as generalist robot policies. However, these models pose extreme safety challenges during real-world deployment, including the risk of harm to the environment, the robot itself, and humans. How can safety constraints be explicitly integrated into VLAs? We address this by exploring an integrated safety approach (ISA), systematically modeling safety requirements, then actively eliciting diverse unsafe behaviors, effectively constraining VLA policies via safe reinforcement learning, and rigorously assuring their safety through targeted evaluations. Leveraging the constrained Markov decision process (CMDP) paradigm, ISA optimizes VLAs from a min-max perspective against elicited safety risks. Thus, policies aligned through this comprehensive approach achieve the following key features: (I) effective safety-performance trade-offs, this exploration yields an 83.58% safety improvement compared to the current state-of-the-art method, while also maintaining task performance (+3.85%). (II) strong safety assurance, with the ability to mitigate long-tail risks and handle extreme failure scenarios. (III) robust generalization of learned safety behaviors to various out-of-distribution perturbations. Our data, models and newly proposed benchmark environment are available at https://pku-safevla.github.io.

26 pages, 12 figures
LoHoVLA: A Unified Vision-Language-Action Model for Long-Horizon Embodied Tasks 2025-05-31
Show

Real-world embodied agents face long-horizon tasks, characterized by high-level goals demanding multi-step solutions beyond single actions. Successfully navigating these requires both high-level task planning (i.e., decomposing goals into sub-tasks) and low-level motion control (i.e., generating precise robot actions). While existing vision language action (VLA) models and hierarchical architectures offer potential in embodied tasks, the former often falter in planning, and the latter can suffer from coordination issues, both hampering performance. We introduce a new unified VLA framework for long-horizon tasks, dubbed LoHoVLA, to overcome these limitations. LoHoVLA leverages a large pretrained vision language model (VLM) as the backbone to jointly generate language and action tokens for sub-task generation and robot action prediction, respectively. This shared representation promotes better generalization across tasks. Additionally, LoHoVLA embraces a hierarchical closed-loop control mechanism to mitigate errors originating from both high-level planning and low-level control. To train LoHoVLA, we introduce LoHoSet, a dataset built on the Ravens simulator, containing 20 long-horizon tasks, each with 1,000 expert demonstrations composed of visual observations, linguistic goals, sub-tasks, and robot actions. Experimental results show that LoHoVLA significantly surpasses both hierarchical and standard VLA approaches on long-horizon embodied tasks in the Ravens simulator. These findings underscore the promise of unified architectures for advancing generalizable embodied intelligence.

Saliency-Aware Quantized Imitation Learning for Efficient Robotic Control 2025-05-30
Show

Deep neural network (DNN)-based policy models, such as vision-language-action (VLA) models, excel at automating complex decision-making from multi-modal inputs. However, scaling these models greatly increases computational overhead, complicating deployment in resource-constrained settings like robot manipulation and autonomous driving. To address this, we propose Saliency-Aware Quantized Imitation Learning (SQIL), which combines quantization-aware training with a selective loss-weighting strategy for mission-critical states. By identifying these states via saliency scores and emphasizing them in the training loss, SQIL preserves decision fidelity under low-bit precision. We validate SQIL's generalization capability across extensive simulation benchmarks with environment variations, real-world tasks, and cross-domain tasks (self-driving, physics simulation), consistently recovering full-precision performance. Notably, a 4-bit weight-quantized VLA model for robotic manipulation achieves up to 2.5x speedup and 2.5x energy savings on an edge GPU with minimal accuracy loss. These results underline SQIL's potential for efficiently deploying large IL-based policy models on resource-limited devices.

arXiv...

arXiv admin note: text overlap with arXiv:2412.01034

Towards a Generalizable Bimanual Foundation Policy via Flow-based Video Prediction 2025-05-30
Show

Learning a generalizable bimanual manipulation policy is extremely challenging for embodied agents due to the large action space and the need for coordinated arm movements. Existing approaches rely on Vision-Language-Action (VLA) models to acquire bimanual policies. However, transferring knowledge from single-arm datasets or pre-trained VLA models often fails to generalize effectively, primarily due to the scarcity of bimanual data and the fundamental differences between single-arm and bimanual manipulation. In this paper, we propose a novel bimanual foundation policy by fine-tuning the leading text-to-video models to predict robot trajectories and training a lightweight diffusion policy for action generation. Given the lack of embodied knowledge in text-to-video models, we introduce a two-stage paradigm that fine-tunes independent text-to-flow and flow-to-video models derived from a pre-trained text-to-video model. Specifically, optical flow serves as an intermediate variable, providing a concise representation of subtle movements between images. The text-to-flow model predicts optical flow to concretize the intent of language instructions, and the flow-to-video model leverages this flow for fine-grained video prediction. Our method mitigates the ambiguity of language in single-stage text-to-video prediction and significantly reduces the robot-data requirement by avoiding direct use of low-level actions. In experiments, we collect high-quality manipulation data for real dual-arm robot, and the results of simulation and real-world experiments demonstrate the effectiveness of our method.

ChatVLA-2: Vision-Language-Action Model with Open-World Embodied Reasoning from Pretrained Knowledge 2025-05-29
Show

Vision-language-action (VLA) models have emerged as the next generation of models in robotics. However, despite leveraging powerful pre-trained Vision-Language Models (VLMs), existing end-to-end VLA systems often lose key capabilities during fine-tuning as the model adapts to specific robotic tasks. We argue that a generalizable VLA model should retain and expand upon the VLM's core competencies: 1) Open-world embodied reasoning - the VLA should inherit the knowledge from VLM, i.e., recognize anything that the VLM can recognize, be capable of solving math problems, and possess visual-spatial intelligence, 2) Reasoning following - effectively translating the open-world reasoning into actionable steps for the robot. In this work, we introduce ChatVLA-2, a novel mixture-of-expert VLA model coupled with a specialized two-stage training pipeline designed to preserve the VLM's original strengths while enabling actionable reasoning. To validate our approach, we design a math-matching task wherein a robot interprets math problems written on a whiteboard and picks corresponding number cards from a table to solve equations. Remarkably, our method exhibits exceptional mathematical reasoning and OCR capabilities, despite these abilities not being explicitly trained within the VLA. Furthermore, we demonstrate that the VLA possesses strong spatial reasoning skills, enabling it to interpret novel directional instructions involving previously unseen objects. Overall, our method showcases reasoning and comprehension abilities that significantly surpass state-of-the-art imitation learning methods such as OpenVLA, DexVLA, and pi-zero. This work represents a substantial advancement toward developing truly generalizable robotic foundation models endowed with robust reasoning capacities.

Proje...

Project page: https://chatvla-2.github.io/

Impromptu VLA: Open Weights and Open Data for Driving Vision-Language-Action Models 2025-05-29
Show

Vision-Language-Action (VLA) models for autonomous driving show promise but falter in unstructured corner case scenarios, largely due to a scarcity of targeted benchmarks. To address this, we introduce Impromptu VLA. Our core contribution is the Impromptu VLA Dataset: over 80,000 meticulously curated video clips, distilled from over 2M source clips sourced from 8 open-source large-scale datasets. This dataset is built upon our novel taxonomy of four challenging unstructured categories and features rich, planning-oriented question-answering annotations and action trajectories. Crucially, experiments demonstrate that VLAs trained with our dataset achieve substantial performance gains on established benchmarks--improving closed-loop NeuroNCAP scores and collision rates, and reaching near state-of-the-art L2 accuracy in open-loop nuScenes trajectory prediction. Furthermore, our Q&A suite serves as an effective diagnostic, revealing clear VLM improvements in perception, prediction, and planning. Our code, data and models are available at https://github.com/ahydchh/Impromptu-VLA.

Proje...

Project page: https://github.com/ahydchh/Impromptu-VLA

Knowledge Insulating Vision-Language-Action Models: Train Fast, Run Fast, Generalize Better 2025-05-29
Show

Vision-language-action (VLA) models provide a powerful approach to training control policies for physical systems, such as robots, by combining end-to-end learning with transfer of semantic knowledge from web-scale vision-language model (VLM) training. However, the constraints of real-time control are often at odds with the design of VLMs: the most powerful VLMs have tens or hundreds of billions of parameters, presenting an obstacle to real-time inference, and operate on discrete tokens rather than the continuous-valued outputs that are required for controlling robots. To address this challenge, recent VLA models have used specialized modules for efficient continuous control, such as action experts or continuous output heads, which typically require adding new untrained parameters to the pretrained VLM backbone. While these modules improve real-time and control capabilities, it remains an open question whether they preserve or degrade the semantic knowledge contained in the pretrained VLM, and what effect they have on the VLA training dynamics. In this paper, we study this question in the context of VLAs that include a continuous diffusion or flow matching action expert, showing that naively including such experts significantly harms both training speed and knowledge transfer. We provide an extensive analysis of various design choices, their impact on performance and knowledge transfer, and propose a technique for insulating the VLM backbone during VLA training that mitigates this issue. Videos are available at https://pi.website/research/knowledge_insulation.

TrackVLA: Embodied Visual Tracking in the Wild 2025-05-29
Show

Embodied visual tracking is a fundamental skill in Embodied AI, enabling an agent to follow a specific target in dynamic environments using only egocentric vision. This task is inherently challenging as it requires both accurate target recognition and effective trajectory planning under conditions of severe occlusion and high scene dynamics. Existing approaches typically address this challenge through a modular separation of recognition and planning. In this work, we propose TrackVLA, a Vision-Language-Action (VLA) model that learns the synergy between object recognition and trajectory planning. Leveraging a shared LLM backbone, we employ a language modeling head for recognition and an anchor-based diffusion model for trajectory planning. To train TrackVLA, we construct an Embodied Visual Tracking Benchmark (EVT-Bench) and collect diverse difficulty levels of recognition samples, resulting in a dataset of 1.7 million samples. Through extensive experiments in both synthetic and real-world environments, TrackVLA demonstrates SOTA performance and strong generalizability. It significantly outperforms existing methods on public benchmarks in a zero-shot manner while remaining robust to high dynamics and occlusion in real-world scenarios at 10 FPS inference speed. Our project page is: https://pku-epic.github.io/TrackVLA-web.

Visual SLAM

Title Date Abstract Comment
DINO-VO: A Feature-based Visual Odometry Leveraging a Visual Foundation Model 2025-07-17
Show

Learning-based monocular visual odometry (VO) poses robustness, generalization, and efficiency challenges in robotics. Recent advances in visual foundation models, such as DINOv2, have improved robustness and generalization in various vision tasks, yet their integration in VO remains limited due to coarse feature granularity. In this paper, we present DINO-VO, a feature-based VO system leveraging DINOv2 visual foundation model for its sparse feature matching. To address the integration challenge, we propose a salient keypoints detector tailored to DINOv2's coarse features. Furthermore, we complement DINOv2's robust-semantic features with fine-grained geometric features, resulting in more localizable representations. Finally, a transformer-based matcher and differentiable pose estimation layer enable precise camera motion estimation by learning good matches. Against prior detector-descriptor networks like SuperPoint, DINO-VO demonstrates greater robustness in challenging environments. Furthermore, we show superior accuracy and generalization of the proposed feature descriptors against standalone DINOv2 coarse features. DINO-VO outperforms prior frame-to-frame VO methods on the TartanAir and KITTI datasets and is competitive on EuRoC dataset, while running efficiently at 72 FPS with less than 1GB of memory usage on a single GPU. Moreover, it performs competitively against Visual SLAM systems on outdoor driving scenarios, showcasing its generalization capabilities.

8 pag...

8 pages, 6 figures. Accepted for publication in IEEE Robotics and Automation Letters (RA-L), July 2025

FLAF: Focal Line and Feature-constrained Active View Planning for Visual Teach and Repeat 2025-07-15
Show

This paper presents FLAF, a focal line and feature-constrained active view planning method for tracking failure avoidance in feature-based visual navigation of mobile robots. Our FLAF-based visual navigation is built upon a feature-based visual teach and repeat (VT&R) framework, which supports many robotic applications by teaching a robot to navigate on various paths that cover a significant portion of daily autonomous navigation requirements. However, tracking failure in feature-based visual simultaneous localization and mapping (VSLAM) caused by textureless regions in human-made environments is still limiting VT&R to be adopted in the real world. To address this problem, the proposed view planner is integrated into a feature-based visual SLAM system to build up an active VT&R system that avoids tracking failure. In our system, a pan-tilt unit (PTU)-based active camera is mounted on the mobile robot. Using FLAF, the active camera-based VSLAM operates during the teaching phase to construct a complete path map and in the repeat phase to maintain stable localization. FLAF orients the robot toward more map points to avoid mapping failures during path learning and toward more feature-identifiable map points beneficial for localization while following the learned trajectory. Experiments in real scenarios demonstrate that FLAF outperforms the methods that do not consider feature-identifiability, and our active VT&R system performs well in complex environments by effectively dealing with low-texture regions.

IRAF-SLAM: An Illumination-Robust and Adaptive Feature-Culling Front-End for Visual SLAM in Challenging Environments 2025-07-10
Show

Robust Visual SLAM (vSLAM) is essential for autonomous systems operating in real-world environments, where challenges such as dynamic objects, low texture, and critically, varying illumination conditions often degrade performance. Existing feature-based SLAM systems rely on fixed front-end parameters, making them vulnerable to sudden lighting changes and unstable feature tracking. To address these challenges, we propose ``IRAF-SLAM'', an Illumination-Robust and Adaptive Feature-Culling front-end designed to enhance vSLAM resilience in complex and challenging environments. Our approach introduces: (1) an image enhancement scheme to preprocess and adjust image quality under varying lighting conditions; (2) an adaptive feature extraction mechanism that dynamically adjusts detection sensitivity based on image entropy, pixel intensity, and gradient analysis; and (3) a feature culling strategy that filters out unreliable feature points using density distribution analysis and a lighting impact factor. Comprehensive evaluations on the TUM-VI and European Robotics Challenge (EuRoC) datasets demonstrate that IRAF-SLAM significantly reduces tracking failures and achieves superior trajectory accuracy compared to state-of-the-art vSLAM methods under adverse illumination conditions. These results highlight the effectiveness of adaptive front-end strategies in improving vSLAM robustness without incurring significant computational overhead. The implementation of IRAF-SLAM is publicly available at https://thanhnguyencanh. github.io/IRAF-SLAM/.

In th...

In the European Conference on Mobile Robots 2025

ROVER: A Multi-Season Dataset for Visual SLAM 2025-07-09
Show

Robust SLAM is a crucial enabler for autonomous navigation in natural, semi-structured environments such as parks and gardens. However, these environments present unique challenges for SLAM due to frequent seasonal changes, varying light conditions, and dense vegetation. These factors often degrade the performance of visual SLAM algorithms originally developed for structured urban environments. To address this gap, we present ROVER, a comprehensive benchmark dataset tailored for evaluating visual SLAM algorithms under diverse environmental conditions and spatial configurations. We captured the dataset with a robotic platform equipped with monocular, stereo, and RGBD cameras, as well as inertial sensors. It covers 39 recordings across five outdoor locations, collected through all seasons and various lighting scenarios, i.e., day, dusk, and night with and without external lighting. With this novel dataset, we evaluate several traditional and deep learning-based SLAM methods and study their performance in diverse challenging conditions. The results demonstrate that while stereo-inertial and RGBD configurations generally perform better under favorable lighting and moderate vegetation, most SLAM systems perform poorly in low-light and high-vegetation scenarios, particularly during summer and autumn. Our analysis highlights the need for improved adaptability in visual SLAM algorithms for outdoor applications, as current systems struggle with dynamic environmental factors affecting scale, feature extraction, and trajectory consistency. This dataset provides a solid foundation for advancing visual SLAM research in real-world, semi-structured environments, fostering the development of more resilient SLAM systems for long-term outdoor localization and mapping. The dataset and the code of the benchmark are available under https://iis-esslingen.github.io/rover.

Copyr...

Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Real-Time Obstacle Avoidance Algorithms for Unmanned Aerial and Ground Vehicles 2025-06-25
Show

The growing use of mobile robots in sectors such as automotive, agriculture, and rescue operations reflects progress in robotics and autonomy. In unmanned aerial vehicles (UAVs), most research emphasizes visual SLAM, sensor fusion, and path planning. However, applying UAVs to search and rescue missions in disaster zones remains underexplored, especially for autonomous navigation. This report develops methods for real-time and secure UAV maneuvering in complex 3D environments, crucial during forest fires. Building upon past research, it focuses on designing navigation algorithms for unfamiliar and hazardous environments, aiming to improve rescue efficiency and safety through UAV-based early warning and rapid response. The work unfolds in phases. First, a 2D fusion navigation strategy is explored, initially for mobile robots, enabling safe movement in dynamic settings. This sets the stage for advanced features such as adaptive obstacle handling and decision-making enhancements. Next, a novel 3D reactive navigation strategy is introduced for collision-free movement in forest fire simulations, addressing the unique challenges of UAV operations in such scenarios. Finally, the report proposes a unified control approach that integrates UAVs and unmanned ground vehicles (UGVs) for coordinated rescue missions in forest environments. Each phase presents challenges, proposes control models, and validates them with mathematical and simulation-based evidence. The study offers practical value and academic insights for improving the role of UAVs in natural disaster rescue operations.

Neural Graph Map: Dense Mapping with Efficient Loop Closure Integration 2025-06-25
Show

Neural field-based SLAM methods typically employ a single, monolithic field as their scene representation. This prevents efficient incorporation of loop closure constraints and limits scalability. To address these shortcomings, we propose a novel RGB-D neural mapping framework in which the scene is represented by a collection of lightweight neural fields which are dynamically anchored to the pose graph of a sparse visual SLAM system. Our approach shows the ability to integrate large-scale loop closures, while requiring only minimal reintegration. Furthermore, we verify the scalability of our approach by demonstrating successful building-scale mapping taking multiple loop closures into account during the optimization, and show that our method outperforms existing state-of-the-art approaches on large scenes in terms of quality and runtime. Our code is available open-source at https://github.com/KTH-RPL/neural_graph_mapping.

WACV ...

WACV 2025, Project page: https://kth-rpl.github.io/neural_graph_mapping/

Multimodal Fusion SLAM with Fourier Attention 2025-06-24
Show

Visual SLAM is particularly challenging in environments affected by noise, varying lighting conditions, and darkness. Learning-based optical flow algorithms can leverage multiple modalities to address these challenges, but traditional optical flow-based visual SLAM approaches often require significant computational resources.To overcome this limitation, we propose FMF-SLAM, an efficient multimodal fusion SLAM method that utilizes fast Fourier transform (FFT) to enhance the algorithm efficiency. Specifically, we introduce a novel Fourier-based self-attention and cross-attention mechanism to extract features from RGB and depth signals. We further enhance the interaction of multimodal features by incorporating multi-scale knowledge distillation across modalities. We also demonstrate the practical feasibility of FMF-SLAM in real-world scenarios with real time performance by integrating it with a security robot by fusing with a global positioning module GNSS-RTK and global Bundle Adjustment. Our approach is validated using video sequences from TUM, TartanAir, and our real-world datasets, showcasing state-of-the-art performance under noisy, varying lighting, and dark conditions.Our code and datasets are available at https://github.com/youjie-zhou/FMF-SLAM.git.

Accepted in IEEE RAL
GRAND-SLAM: Local Optimization for Globally Consistent Large-Scale Multi-Agent Gaussian SLAM 2025-06-23
Show

3D Gaussian splatting has emerged as an expressive scene representation for RGB-D visual SLAM, but its application to large-scale, multi-agent outdoor environments remains unexplored. Multi-agent Gaussian SLAM is a promising approach to rapid exploration and reconstruction of environments, offering scalable environment representations, but existing approaches are limited to small-scale, indoor environments. To that end, we propose Gaussian Reconstruction via Multi-Agent Dense SLAM, or GRAND-SLAM, a collaborative Gaussian splatting SLAM method that integrates i) an implicit tracking module based on local optimization over submaps and ii) an approach to inter- and intra-robot loop closure integrated into a pose-graph optimization framework. Experiments show that GRAND-SLAM provides state-of-the-art tracking performance and 28% higher PSNR than existing methods on the Replica indoor dataset, as well as 91% lower multi-agent tracking error and improved rendering over existing multi-agent methods on the large-scale, outdoor Kimera-Multi dataset.

MCN-SLAM: Multi-Agent Collaborative Neural SLAM with Hybrid Implicit Neural Scene Representation 2025-06-23
Show

Neural implicit scene representations have recently shown promising results in dense visual SLAM. However, existing implicit SLAM algorithms are constrained to single-agent scenarios, and fall difficulties in large-scale scenes and long sequences. Existing NeRF-based multi-agent SLAM frameworks cannot meet the constraints of communication bandwidth. To this end, we propose the first distributed multi-agent collaborative neural SLAM framework with hybrid scene representation, distributed camera tracking, intra-to-inter loop closure, and online distillation for multiple submap fusion. A novel triplane-grid joint scene representation method is proposed to improve scene reconstruction. A novel intra-to-inter loop closure method is designed to achieve local (single-agent) and global (multi-agent) consistency. We also design a novel online distillation method to fuse the information of different submaps to achieve global consistency. Furthermore, to the best of our knowledge, there is no real-world dataset for NeRF-based/GS-based SLAM that provides both continuous-time trajectories groundtruth and high-accuracy 3D meshes groundtruth. To this end, we propose the first real-world Dense slam (DES) dataset covering both single-agent and multi-agent scenarios, ranging from small rooms to large-scale outdoor scenes, with high-accuracy ground truth for both 3D mesh and continuous-time camera trajectory. This dataset can advance the development of the research in both SLAM, 3D reconstruction, and visual foundation model. Experiments on various datasets demonstrate the superiority of the proposed method in both mapping, tracking, and communication. The dataset and code will open-source on https://github.com/dtc111111/mcnslam.

4Seasons: Benchmarking Visual SLAM and Long-Term Localization for Autonomous Driving in Challenging Conditions 2025-06-19
Show

In this paper, we present a novel visual SLAM and long-term localization benchmark for autonomous driving in challenging conditions based on the large-scale 4Seasons dataset. The proposed benchmark provides drastic appearance variations caused by seasonal changes and diverse weather and illumination conditions. While significant progress has been made in advancing visual SLAM on small-scale datasets with similar conditions, there is still a lack of unified benchmarks representative of real-world scenarios for autonomous driving. We introduce a new unified benchmark for jointly evaluating visual odometry, global place recognition, and map-based visual localization performance which is crucial to successfully enable autonomous driving in any condition. The data has been collected for more than one year, resulting in more than 300 km of recordings in nine different environments ranging from a multi-level parking garage to urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up to centimeter-level accuracy obtained from the fusion of direct stereo-inertial odometry with RTK GNSS. We evaluate the performance of several state-of-the-art visual odometry and visual localization baseline approaches on the benchmark and analyze their properties. The experimental results provide new insights into current approaches and show promising potential for future research. Our benchmark and evaluation protocols will be available at https://go.vision.in.tum.de/4seasons.

Publi...

Published in International Journal of Computer Vision (IJCV). arXiv admin note: substantial text overlap with arXiv:2009.06364

NGD-SLAM: Towards Real-Time Dynamic SLAM without GPU 2025-06-16
Show

Many existing visual SLAM methods can achieve high localization accuracy in dynamic environments by leveraging deep learning to mask moving objects. However, these methods incur significant computational overhead as the camera tracking needs to wait for the deep neural network to generate mask at each frame, and they typically require GPUs for real-time operation, which restricts their practicality in real-world robotic applications. Therefore, this paper proposes a real-time dynamic SLAM system that runs exclusively on a CPU. Our approach incorporates a mask propagation mechanism that decouples camera tracking and deep learning-based masking for each frame. We also introduce a hybrid tracking strategy that integrates ORB features with optical flow methods, enhancing both robustness and efficiency by selectively allocating computational resources to input frames. Compared to previous methods, our system maintains high localization accuracy in dynamic environments while achieving a tracking frame rate of 60 FPS on a laptop CPU. These results demonstrate the feasibility of utilizing deep learning for dynamic SLAM without GPU support. Since most existing dynamic SLAM systems are not open-source, we make our code publicly available at: https://github.com/yuhaozhang7/NGD-SLAM

7 pages, 6 figures
LRSLAM: Low-rank Representation of Signed Distance Fields in Dense Visual SLAM System 2025-06-12
Show

Simultaneous Localization and Mapping (SLAM) has been crucial across various domains, including autonomous driving, mobile robotics, and mixed reality. Dense visual SLAM, leveraging RGB-D camera systems, offers advantages but faces challenges in achieving real-time performance, robustness, and scalability for large-scale scenes. Recent approaches utilizing neural implicit scene representations show promise but suffer from high computational costs and memory requirements. ESLAM introduced a plane-based tensor decomposition but still struggled with memory growth. Addressing these challenges, we propose a more efficient visual SLAM model, called LRSLAM, utilizing low-rank tensor decomposition methods. Our approach, leveraging the Six-axis and CP decompositions, achieves better convergence rates, memory efficiency, and reconstruction/localization quality than existing state-of-the-art approaches. Evaluation across diverse indoor RGB-D datasets demonstrates LRSLAM's superior performance in terms of parameter efficiency, processing time, and accuracy, retaining reconstruction and localization quality. Our code will be publicly available upon publication.

Accep...

Accepted at ECCV 2024

VAULT: A Mobile Mapping System for ROS 2-based Autonomous Robots 2025-06-11
Show

Localization plays a crucial role in the navigation capabilities of autonomous robots, and while indoor environments can rely on wheel odometry and 2D LiDAR-based mapping, outdoor settings such as agriculture and forestry, present unique challenges that necessitate real-time localization and consistent mapping. Addressing this need, this paper introduces the VAULT prototype, a ROS 2-based mobile mapping system (MMS) that combines various sensors to enable robust outdoor and indoor localization. The proposed solution harnesses the power of Global Navigation Satellite System (GNSS) data, visual-inertial odometry (VIO), inertial measurement unit (IMU) data, and the Extended Kalman Filter (EKF) to generate reliable 3D odometry. To further enhance the localization accuracy, Visual SLAM (VSLAM) is employed, resulting in the creation of a comprehensive 3D point cloud map. By leveraging these sensor technologies and advanced algorithms, the prototype offers a comprehensive solution for outdoor localization in autonomous mobile robots, enabling them to navigate and map their surroundings with confidence and precision.

15 pa...

15 pages, 5 figures, Submitted to WAF 2023: Workshop de Agentes Fisicos

AquaticVision: Benchmarking Visual SLAM in Underwater Environment with Events and Frames 2025-06-05
Show

Many underwater applications, such as offshore asset inspections, rely on visual inspection and detailed 3D reconstruction. Recent advancements in underwater visual SLAM systems for aquatic environments have garnered significant attention in marine robotics research. However, existing underwater visual SLAM datasets often lack groundtruth trajectory data, making it difficult to objectively compare the performance of different SLAM algorithms based solely on qualitative results or COLMAP reconstruction. In this paper, we present a novel underwater dataset that includes ground truth trajectory data obtained using a motion capture system. Additionally, for the first time, we release visual data that includes both events and frames for benchmarking underwater visual positioning. By providing event camera data, we aim to facilitate the development of more robust and advanced underwater visual SLAM algorithms. The use of event cameras can help mitigate challenges posed by extremely low light or hazy underwater conditions. The webpage of our dataset is https://sites.google.com/view/aquaticvision-lias.

PLGSLAM: Progressive Neural Scene Represenation with Local to Global Bundle Adjustment 2025-05-27
Show

Neural implicit scene representations have recently shown encouraging results in dense visual SLAM. However, existing methods produce low-quality scene reconstruction and low-accuracy localization performance when scaling up to large indoor scenes and long sequences. These limitations are mainly due to their single, global radiance field with finite capacity, which does not adapt to large scenarios. Their end-to-end pose networks are also not robust enough with the growth of cumulative errors in large scenes. To this end, we introduce PLGSLAM, a neural visual SLAM system capable of high-fidelity surface reconstruction and robust camera tracking in real-time. To handle large-scale indoor scenes, PLGSLAM proposes a progressive scene representation method which dynamically allocates new local scene representation trained with frames within a local sliding window. This allows us to scale up to larger indoor scenes and improves robustness (even under pose drifts). In local scene representation, PLGSLAM utilizes tri-planes for local high-frequency features with multi-layer perceptron (MLP) networks for the low-frequency feature, achieving smoothness and scene completion in unobserved areas. Moreover, we propose local-to-global bundle adjustment method with a global keyframe database to address the increased pose drifts on long sequences. Experimental results demonstrate that PLGSLAM achieves state-of-the-art scene reconstruction results and tracking performance across various datasets and scenarios (both in small and large-scale indoor environments). The code is open-sourced at https://github.com/dtc111111/plgslam.

Accep...

Accepted by CVPR 2024

VPGS-SLAM: Voxel-based Progressive 3D Gaussian SLAM in Large-Scale Scenes 2025-05-25
Show

3D Gaussian Splatting has recently shown promising results in dense visual SLAM. However, existing 3DGS-based SLAM methods are all constrained to small-room scenarios and struggle with memory explosion in large-scale scenes and long sequences. To this end, we propose VPGS-SLAM, the first 3DGS-based large-scale RGBD SLAM framework for both indoor and outdoor scenarios. We design a novel voxel-based progressive 3D Gaussian mapping method with multiple submaps for compact and accurate scene representation in large-scale and long-sequence scenes. This allows us to scale up to arbitrary scenes and improves robustness (even under pose drifts). In addition, we propose a 2D-3D fusion camera tracking method to achieve robust and accurate camera tracking in both indoor and outdoor large-scale scenes. Furthermore, we design a 2D-3D Gaussian loop closure method to eliminate pose drift. We further propose a submap fusion method with online distillation to achieve global consistency in large-scale scenes when detecting a loop. Experiments on various indoor and outdoor datasets demonstrate the superiority and generalizability of the proposed framework. The code will be open source on https://github.com/dtc111111/vpgs-slam.

TAT-VPR: Ternary Adaptive Transformer for Dynamic and Efficient Visual Place Recognition 2025-05-22
Show

TAT-VPR is a ternary-quantized transformer that brings dynamic accuracy-efficiency trade-offs to visual SLAM loop-closure. By fusing ternary weights with a learned activation-sparsity gate, the model can control computation by up to 40% at run-time without degrading performance (Recall@1). The proposed two-stage distillation pipeline preserves descriptor quality, letting it run on micro-UAV and embedded SLAM stacks while matching state-of-the-art localization accuracy.

Is Semantic SLAM Ready for Embedded Systems ? A Comparative Survey 2025-05-18
Show

In embedded systems, robots must perceive and interpret their environment efficiently to operate reliably in real-world conditions. Visual Semantic SLAM (Simultaneous Localization and Mapping) enhances standard SLAM by incorporating semantic information into the map, enabling more informed decision-making. However, implementing such systems on resource-limited hardware involves trade-offs between accuracy, computing efficiency, and power usage. This paper provides a comparative review of recent Semantic Visual SLAM methods with a focus on their applicability to embedded platforms. We analyze three main types of architectures - Geometric SLAM, Neural Radiance Fields (NeRF), and 3D Gaussian Splatting - and evaluate their performance on constrained hardware, specifically the NVIDIA Jetson AGX Orin. We compare their accuracy, segmentation quality, memory usage, and energy consumption. Our results show that methods based on NeRF and Gaussian Splatting achieve high semantic detail but demand substantial computing resources, limiting their use on embedded devices. In contrast, Semantic Geometric SLAM offers a more practical balance between computational cost and accuracy. The review highlights a need for SLAM algorithms that are better adapted to embedded environments, and it discusses key directions for improving their efficiency through algorithm-hardware co-design.

Large-Scale Gaussian Splatting SLAM 2025-05-15
Show

The recently developed Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have shown encouraging and impressive results for visual SLAM. However, most representative methods require RGBD sensors and are only available for indoor environments. The robustness of reconstruction in large-scale outdoor scenarios remains unexplored. This paper introduces a large-scale 3DGS-based visual SLAM with stereo cameras, termed LSG-SLAM. The proposed LSG-SLAM employs a multi-modality strategy to estimate prior poses under large view changes. In tracking, we introduce feature-alignment warping constraints to alleviate the adverse effects of appearance similarity in rendering losses. For the scalability of large-scale scenarios, we introduce continuous Gaussian Splatting submaps to tackle unbounded scenes with limited memory. Loops are detected between GS submaps by place recognition and the relative pose between looped keyframes is optimized utilizing rendering and feature warping losses. After the global optimization of camera poses and Gaussian points, a structure refinement module enhances the reconstruction quality. With extensive evaluations on the EuRoc and KITTI datasets, LSG-SLAM achieves superior performance over existing Neural, 3DGS-based, and even traditional approaches. Project page: https://lsg-slam.github.io.

Large-scale visual SLAM for in-the-wild videos 2025-04-29
Show

Accurate and robust 3D scene reconstruction from casual, in-the-wild videos can significantly simplify robot deployment to new environments. However, reliable camera pose estimation and scene reconstruction from such unconstrained videos remains an open challenge. Existing visual-only SLAM methods perform well on benchmark datasets but struggle with real-world footage which often exhibits uncontrolled motion including rapid rotations and pure forward movements, textureless regions, and dynamic objects. We analyze the limitations of current methods and introduce a robust pipeline designed to improve 3D reconstruction from casual videos. We build upon recent deep visual odometry methods but increase robustness in several ways. Camera intrinsics are automatically recovered from the first few frames using structure-from-motion. Dynamic objects and less-constrained areas are masked with a predictive model. Additionally, we leverage monocular depth estimates to regularize bundle adjustment, mitigating errors in low-parallax situations. Finally, we integrate place recognition and loop closure to reduce long-term drift and refine both intrinsics and pose estimates through global bundle adjustment. We demonstrate large-scale contiguous 3D models from several online videos in various environments. In contrast, baseline methods typically produce locally inconsistent results at several points, producing separate segments or distorted maps. In lieu of ground-truth pose data, we evaluate map consistency, execution time and visual accuracy of re-rendered NeRF models. Our proposed system establishes a new baseline for visual reconstruction from casual uncontrolled videos found online, demonstrating more consistent reconstructions over longer sequences of in-the-wild videos than previously achieved.

fix t...

fix the overview figure

SLAM-Based Navigation and Fault Resilience in a Surveillance Quadcopter with Embedded Vision Systems 2025-04-23
Show

We present an autonomous aerial surveillance platform, Veg, designed as a fault-tolerant quadcopter system that integrates visual SLAM for GPS-independent navigation, advanced control architecture for dynamic stability, and embedded vision modules for real-time object and face recognition. The platform features a cascaded control design with an LQR inner-loop and PD outer-loop trajectory control. It leverages ORB-SLAM3 for 6-DoF localization and loop closure, and supports waypoint-based navigation through Dijkstra path planning over SLAM-derived maps. A real-time Failure Detection and Identification (FDI) system detects rotor faults and executes emergency landing through re-routing. The embedded vision system, based on a lightweight CNN and PCA, enables onboard object detection and face recognition with high precision. The drone operates fully onboard using a Raspberry Pi 4 and Arduino Nano, validated through simulations and real-world testing. This work consolidates real-time localization, fault recovery, and embedded AI on a single platform suitable for constrained environments.

18 pa...

18 pages, 21 figures, 15 tables. Onboard processing using Raspberry Pi 4 and Arduino Nano. Includes ORB-SLAM3-based navigation, LQR control, rotor fault recovery, object detection, and PCA face recognition. Real-world and simulation tests included. Designed for GPS-denied autonomous UAV surveillance

GroundSLAM: A Robust Visual SLAM System for Warehouse Robots Using Ground Textures 2025-04-16
Show

A robust visual localization and mapping system is essential for warehouse robot navigation, as cameras offer a more cost-effective alternative to LiDAR sensors. However, existing forward-facing camera systems often encounter challenges in dynamic environments and open spaces, leading to significant performance degradation during deployment. To address these limitations, a localization system utilizing a single downward-facing camera to capture ground textures presents a promising solution. Nevertheless, existing feature-based ground-texture localization methods face difficulties when operating on surfaces with sparse features or repetitive patterns. To address this limitation, we propose GroundSLAM, a novel feature-free and ground-texture-based simultaneous localization and mapping (SLAM) system. GroundSLAM consists of three components: feature-free visual odometry, ground-texture-based loop detection and map optimization, and map reuse. Specifically, we introduce a kernel cross-correlator (KCC) for image-level pose tracking, loop detection, and map reuse to improve localization accuracy and robustness, and incorporate adaptive pruning strategies to enhance efficiency. Due to these specific designs, GroundSLAM is able to deliver efficient and stable localization across various ground surfaces such as those with sparse features and repetitive patterns. To advance research in this area, we introduce the first ground-texture dataset with precise ground-truth poses, consisting of 131k images collected from 10 kinds of indoor and outdoor ground surfaces. Extensive experimental results show that GroundSLAM outperforms state-of-the-art methods for both indoor and outdoor localization. We release our code and dataset at https://github.com/sair-lab/GroundSLAM.

Survey on Monocular Metric Depth Estimation 2025-04-10
Show

Monocular Depth Estimation (MDE) is a core task in computer vision that enables spatial understanding, 3D reconstruction, and autonomous navigation. Deep learning methods typically estimate relative depth from a single image, but the lack of metric scale often leads to geometric inconsistencies. This limitation severely impacts applications such as visual SLAM, detailed 3D modeling, and novel view synthesis. Monocular Metric Depth Estimation (MMDE) addresses this issue by producing depth maps with absolute scale, ensuring frame-to-frame consistency and supporting direct deployment without scale calibration. This paper presents a structured survey of depth estimation methods, tracing the evolution from traditional geometry-based approaches to modern deep learning models. Recent progress in MMDE is analyzed, with a focus on two key challenges: poor generalization and blurred object boundaries. To tackle these problems, researchers have explored various strategies, including self-supervised learning with unlabeled data, patch-based training, architectural enhancements, and generative model integration. Each method is discussed in terms of technical contribution, performance improvement, and remaining limitations. The survey consolidates recent findings, identifies unresolved challenges, and outlines future directions for MMDE. By highlighting key advancements and open problems, this paper aims to support the continued development and real-world adoption of metric depth estimation in computer vision.

VSLAM-LAB: A Comprehensive Framework for Visual SLAM Methods and Datasets 2025-04-06
Show

Visual Simultaneous Localization and Mapping (VSLAM) research faces significant challenges due to fragmented toolchains, complex system configurations, and inconsistent evaluation methodologies. To address these issues, we present VSLAM-LAB, a unified framework designed to streamline the development, evaluation, and deployment of VSLAM systems. VSLAM-LAB simplifies the entire workflow by enabling seamless compilation and configuration of VSLAM algorithms, automated dataset downloading and preprocessing, and standardized experiment design, execution, and evaluation--all accessible through a single command-line interface. The framework supports a wide range of VSLAM systems and datasets, offering broad compatibility and extendability while promoting reproducibility through consistent evaluation metrics and analysis tools. By reducing implementation complexity and minimizing configuration overhead, VSLAM-LAB empowers researchers to focus on advancing VSLAM methodologies and accelerates progress toward scalable, real-world solutions. We demonstrate the ease with which user-relevant benchmarks can be created: here, we introduce difficulty-level-based categories, but one could envision environment-specific or condition-specific categories.

SuperEvent: Cross-Modal Learning of Event-based Keypoint Detection 2025-03-31
Show

Event-based keypoint detection and matching holds significant potential, enabling the integration of event sensors into highly optimized Visual SLAM systems developed for frame cameras over decades of research. Unfortunately, existing approaches struggle with the motion-dependent appearance of keypoints and the complex noise prevalent in event streams, resulting in severely limited feature matching capabilities and poor performance on downstream tasks. To mitigate this problem, we propose SuperEvent, a data-driven approach to predict stable keypoints with expressive descriptors. Due to the absence of event datasets with ground truth keypoint labels, we leverage existing frame-based keypoint detectors on readily available event-aligned and synchronized gray-scale frames for self-supervision: we generate temporally sparse keypoint pseudo-labels considering that events are a product of both scene appearance and camera motion. Combined with our novel, information-rich event representation, we enable SuperEvent to effectively learn robust keypoint detection and description in event streams. Finally, we demonstrate the usefulness of SuperEvent by its integration into a modern sparse keypoint and descriptor-based SLAM framework originally developed for traditional cameras, surpassing the state-of-the-art in event-based SLAM by a wide margin. Source code and multimedia material are available at smartroboticslab.github.io/SuperEvent.

In Review for ICCV25
MCVO: A Generic Visual Odometry for Arbitrarily Arranged Multi-Cameras 2025-03-25
Show

Making multi-camera visual SLAM systems easier to set up and more robust to the environment is attractive for vision robots. Existing monocular and binocular vision SLAM systems have narrow sensing Field-of-View (FoV), resulting in degenerated accuracy and limited robustness in textureless environments. Thus multi-camera SLAM systems are gaining attention because they can provide redundancy with much wider FoV. However, the usual arbitrary placement and orientation of multiple cameras make the pose scale estimation and system updating challenging. To address these problems, we propose a robust visual odometry system for rigidly-bundled arbitrarily-arranged multi-cameras, namely MCVO, which can achieve metric-scale state estimation with high flexibility in the cameras' arrangement. Specifically, we first design a learning-based feature tracking framework to shift the pressure of CPU processing of multiple video streams to GPU. Then we initialize the odometry system with the metric-scale poses under the rigid constraints between moving cameras. Finally, we fuse the features of the multi-cameras in the back-end to achieve robust pose estimation and online scale optimization. Additionally, multi-camera features help improve the loop detection for pose graph optimization. Experiments on KITTI-360 and MultiCamData datasets validate its robustness over arbitrarily arranged cameras. Compared with other stereo and multi-camera visual SLAM systems, our method obtains higher pose accuracy with better generalization ability. Our codes and online demos are available at https://github.com/JunhaoWang615/MCVO

8 pages, 8 figures
Loop Closure from Two Views: Revisiting PGO for Scalable Trajectory Estimation through Monocular Priors 2025-03-20
Show

(Visual) Simultaneous Localization and Mapping (SLAM) remains a fundamental challenge in enabling autonomous systems to navigate and understand large-scale environments. Traditional SLAM approaches struggle to balance efficiency and accuracy, particularly in large-scale settings where extensive computational resources are required for scene reconstruction and Bundle Adjustment (BA). However, this scene reconstruction, in the form of sparse pointclouds of visual landmarks, is often only used within the SLAM system because navigation and planning methods require different map representations. In this work, we therefore investigate a more scalable Visual SLAM (VSLAM) approach without reconstruction, mainly based on approaches for two-view loop closures. By restricting the map to a sparse keyframed pose graph without dense geometry representations, our '2GO' system achieves efficient optimization with competitive absolute trajectory accuracy. In particular, we find that recent advancements in image matching and monocular depth priors enable very accurate trajectory optimization from two-view edges. We conduct extensive experiments on diverse datasets, including large-scale scenarios, and provide a detailed analysis of the trade-offs between runtime, accuracy, and map size. Our results demonstrate that this streamlined approach supports real-time performance, scales well in map size and trajectory duration, and effectively broadens the capabilities of VSLAM for long-duration deployments to large environments.

NF-SLAM: Effective, Normalizing Flow-supported Neural Field representations for object-level visual SLAM in automotive applications 2025-03-14
Show

We propose a novel, vision-only object-level SLAM framework for automotive applications representing 3D shapes by implicit signed distance functions. Our key innovation consists of augmenting the standard neural representation by a normalizing flow network. As a result, achieving strong representation power on the specific class of road vehicles is made possible by compact networks with only 16-dimensional latent codes. Furthermore, the newly proposed architecture exhibits a significant performance improvement in the presence of only sparse and noisy data, which is demonstrated through comparative experiments on synthetic data. The module is embedded into the back-end of a stereo-vision based framework for joint, incremental shape optimization. The loss function is given by a combination of a sparse 3D point-based SDF loss, a sparse rendering loss, and a semantic mask-based silhouette-consistency term. We furthermore leverage semantic information to determine keypoint extraction density in the front-end. Finally, experimental results on real-world data reveal accurate and reliable performance comparable to alternative frameworks that make use of direct depth readings. The proposed method performs well with only sparse 3D points obtained from bundle adjustment, and eventually continues to deliver stable results even under exclusive use of the mask-consistency term.

9 pag...

9 pages, 5 figures, IROS 2024

MonoSLAM: Robust Monocular SLAM with Global Structure Optimization 2025-03-12
Show

This paper presents a robust monocular visual SLAM system that simultaneously utilizes point, line, and vanishing point features for accurate camera pose estimation and mapping. To address the critical challenge of achieving reliable localization in low-texture environments, where traditional point-based systems often fail due to insufficient visual features, we introduce a novel approach leveraging Global Primitives structural information to improve the system's robustness and accuracy performance. Our key innovation lies in constructing vanishing points from line features and proposing a weighted fusion strategy to build Global Primitives in the world coordinate system. This strategy associates multiple frames with non-overlapping regions and formulates a multi-frame reprojection error optimization, significantly improving tracking accuracy in texture-scarce scenarios. Evaluations on various datasets show that our system outperforms state-of-the-art methods in trajectory precision, particularly in challenging environments.

AirSwarm: Enabling Cost-Effective Multi-UAV Research with COTS drones 2025-03-10
Show

Traditional unmanned aerial vehicle (UAV) swarm missions rely heavily on expensive custom-made drones with onboard perception or external positioning systems, limiting their widespread adoption in research and education. To address this issue, we propose AirSwarm. AirSwarm democratizes multi-drone coordination using low-cost commercially available drones such as Tello or Anafi, enabling affordable swarm aerial robotics research and education. Key innovations include a hierarchical control architecture for reliable multi-UAV coordination, an infrastructure-free visual SLAM system for precise localization without external motion capture, and a ROS-based software framework for simplified swarm development. Experiments demonstrate cm-level tracking accuracy, low-latency control, communication failure resistance, formation flight, and trajectory tracking. By reducing financial and technical barriers, AirSwarm makes multi-robot education and research more accessible. The complete instructions and open source code will be available at

OpenGV 2.0: Motion prior-assisted calibration and SLAM with vehicle-mounted surround-view systems 2025-03-05
Show

The present paper proposes optimization-based solutions to visual SLAM with a vehicle-mounted surround-view camera system. Owing to their original use-case, such systems often only contain a single camera facing into either direction and very limited overlap between fields of view. Our novelty consist of three optimization modules targeting at practical online calibration of exterior orientations from simple two-view geometry, reliable front-end initialization of relative displacements, and accurate back-end optimization using a continuous-time trajectory model. The commonality between the proposed modules is given by the fact that all three of them exploit motion priors that are related to the inherent non-holonomic characteristics of passenger vehicle motion. In contrast to prior related art, the proposed modules furthermore excel in terms of bypassing partial unobservabilities in the transformation variables that commonly occur for Ackermann-motion. As a further contribution, the modules are built into a novel surround-view camera SLAM system that specifically targets deployment on Ackermann vehicles operating in urban environments. All modules are studied in the context of in-depth ablation studies, and the practical validity of the entire framework is supported by a successful application to challenging, large-scale publicly available online datasets. Note that upon acceptance, the entire framework is scheduled for open-source release as part of an extension of the OpenGV library.

Monocular visual simultaneous localization and mapping: (r)evolution from geometry to deep learning-based pipelines 2025-03-04
Show

With the rise of deep learning, there is a fundamental change in visual SLAM algorithms toward developing different modules trained as end-to-end pipelines. However, regardless of the implementation domain, visual SLAM's performance is subject to diverse environmental challenges, such as dynamic elements in outdoor environments, harsh imaging conditions in underwater environments, or blurriness in high-speed setups. These environmental challenges need to be identified to study the real-world viability of SLAM implementations. Motivated by the aforementioned challenges, this paper surveys the current state of visual SLAM algorithms according to the two main frameworks: geometry-based and learning-based SLAM. First, we introduce a general formulation of the SLAM pipeline that includes most of the implementations in the literature. Second, those implementations are classified and surveyed for geometry and learning-based SLAM. After that, environment-specific challenges are formulated to enable experimental evaluation of the resilience of different visual SLAM classes to varying imaging conditions. We address two significant issues in surveying visual SLAM, providing (1) a consistent classification of visual SLAM pipelines and (2) a robust evaluation of their performance under different deployment conditions. Finally, we give our take on future opportunities for visual SLAM implementations.

vS-Graphs: Integrating Visual SLAM and Situational Graphs through Multi-level Scene Understanding 2025-03-03
Show

Current Visual Simultaneous Localization and Mapping (VSLAM) systems often struggle to create maps that are both semantically rich and easily interpretable. While incorporating semantic scene knowledge aids in building richer maps with contextual associations among mapped objects, representing them in structured formats like scene graphs has not been widely addressed, encountering complex map comprehension and limited scalability. This paper introduces visual S-Graphs (vS-Graphs), a novel real-time VSLAM framework that integrates vision-based scene understanding with map reconstruction and comprehensible graph-based representation. The framework infers structural elements (i.e., rooms and corridors) from detected building components (i.e., walls and ground surfaces) and incorporates them into optimizable 3D scene graphs. This solution enhances the reconstructed map's semantic richness, comprehensibility, and localization accuracy. Extensive experiments on standard benchmarks and real-world datasets demonstrate that vS-Graphs outperforms state-of-the-art VSLAM methods, reducing trajectory error by an average of 3.38% and up to 9.58% on real-world data. Furthermore, the proposed framework achieves environment-driven semantic entity detection accuracy comparable to precise LiDAR-based frameworks using only visual features. A web page containing more media and evaluation outcomes is available on https://snt-arg.github.io/vsgraphs-results/.

13 pa...

13 pages, 8 figures, 2 tables

MUSt3R: Multi-view Network for Stereo 3D Reconstruction 2025-03-03
Show

DUSt3R introduced a novel paradigm in geometric computer vision by proposing a model that can provide dense and unconstrained Stereo 3D Reconstruction of arbitrary image collections with no prior information about camera calibration nor viewpoint poses. Under the hood, however, DUSt3R processes image pairs, regressing local 3D reconstructions that need to be aligned in a global coordinate system. The number of pairs, growing quadratically, is an inherent limitation that becomes especially concerning for robust and fast optimization in the case of large image collections. In this paper, we propose an extension of DUSt3R from pairs to multiple views, that addresses all aforementioned concerns. Indeed, we propose a Multi-view Network for Stereo 3D Reconstruction, or MUSt3R, that modifies the DUSt3R architecture by making it symmetric and extending it to directly predict 3D structure for all views in a common coordinate frame. Second, we entail the model with a multi-layer memory mechanism which allows to reduce the computational complexity and to scale the reconstruction to large collections, inferring thousands of 3D pointmaps at high frame-rates with limited added complexity. The framework is designed to perform 3D reconstruction both offline and online, and hence can be seamlessly applied to SfM and visual SLAM scenarios showing state-of-the-art performance on various 3D downstream tasks, including uncalibrated Visual Odometry, relative camera pose, scale and focal estimation, 3D reconstruction and multi-view depth estimation.

Accep...

Accepted at CVPR 2025

HMD^2: Environment-aware Motion Generation from Single Egocentric Head-Mounted Device 2025-03-02
Show

This paper investigates the generation of realistic full-body human motion using a single head-mounted device with an outward-facing color camera and the ability to perform visual SLAM. To address the ambiguity of this setup, we present HMD^2, a novel system that balances motion reconstruction and generation. From a reconstruction standpoint, it aims to maximally utilize the camera streams to produce both analytical and learned features, including head motion, SLAM point cloud, and image embeddings. On the generative front, HMD^2 employs a multi-modal conditional motion diffusion model with a Transformer backbone to maintain temporal coherence of generated motions, and utilizes autoregressive inpainting to facilitate online motion inference with minimal latency (0.17 seconds). We show that our system provides an effective and robust solution that scales to a diverse dataset of over 200 hours of motion in complex indoor and outdoor environments.

Inter...

International Conference on 3D Vision 2025 (3DV 2025)

Action-Consistent Decentralized Belief Space Planning with Inconsistent Beliefs and Limited Data Sharing: Framework and Simplification Algorithms with Formal Guarantees 2025-03-02
Show

In multi-robot systems, ensuring safe and reliable decision making under uncertain conditions demands robust multi-robot belief space planning (MR-BSP) algorithms. While planning with multiple robots, each robot maintains a belief over the state of the environment and reasons how the belief would evolve in the future for different possible actions. However, existing MR-BSP works have a common assumption that the beliefs of different robots are same at planning time. Such an assumption is often unrealistic as it requires prohibitively extensive and frequent data sharing capabilities. In practice, robots may have limited communication capabilities, and consequently beliefs of the robots can be different. Crucially, when the robots have inconsistent beliefs, the existing approaches could result in lack of coordination between the robots and may lead to unsafe decisions. In this paper, we present decentralized MR-BSP algorithms, with performance guarantees, for tackling this crucial gap. Our algorithms leverage the notion of action preferences. The base algorithm VerifyAC guarantees a consistent joint action selection by the cooperative robots via a three-step verification. When the verification succeeds, VerifyAC finds a consistent joint action without triggering a communication; otherwise it triggers a communication. We design an extended algorithm R-VerifyAC for further reducing the number of communications, by relaxing the criteria of action consistency. Another extension R-VerifyAC-simp builds on verifying a partial set of observations and improves the computation time significantly. The theoretical performance guarantees are corroborated with simulation results in discrete setting. Furthermore, we formulate our approaches for continuous and high-dimensional state and observation spaces, and provide experimental results for active multi-robot visual SLAM with real robots.

The n...

The new version has been extended from the existing arxiv version of the paper in the following way: - The old (base) algorithm VerifyAC has been retained in the new version. - Added two new algorithms R-VerifyAC and R-VerifyAC-simp along with their performance guarantees. - A new formulation in continuous spaces have been added. - Experimental results for the new approaches have been added

AirSLAM: An Efficient and Illumination-Robust Point-Line Visual SLAM System 2025-02-27
Show

In this paper, we present an efficient visual SLAM system designed to tackle both short-term and long-term illumination challenges. Our system adopts a hybrid approach that combines deep learning techniques for feature detection and matching with traditional backend optimization methods. Specifically, we propose a unified convolutional neural network (CNN) that simultaneously extracts keypoints and structural lines. These features are then associated, matched, triangulated, and optimized in a coupled manner. Additionally, we introduce a lightweight relocalization pipeline that reuses the built map, where keypoints, lines, and a structure graph are used to match the query frame with the map. To enhance the applicability of the proposed system to real-world robots, we deploy and accelerate the feature detection and matching networks using C++ and NVIDIA TensorRT. Extensive experiments conducted on various datasets demonstrate that our system outperforms other state-of-the-art visual SLAM systems in illumination-challenging environments. Efficiency evaluations show that our system can run at a rate of 73Hz on a PC and 40Hz on an embedded platform. Our implementation is open-sourced: https://github.com/sair-lab/AirSLAM.

20 pa...

20 pages, 15 figures, 9 tables

Increasing the Task Flexibility of Heavy-Duty Manipulators Using Visual 6D Pose Estimation of Objects 2025-02-26
Show

Recent advances in visual 6D pose estimation of objects using deep neural networks have enabled novel ways of vision-based control for heavy-duty robotic applications. In this study, we present a pipeline for the precise tool positioning of heavy-duty, long-reach (HDLR) manipulators using advanced machine vision. A camera is utilized in the so-called eye-in-hand configuration to estimate directly the poses of a tool and a target object of interest (OOI). Based on the pose error between the tool and the target, along with motion-based calibration between the camera and the robot, precise tool positioning can be reliably achieved using conventional robotic modeling and control methods prevalent in the industry. The proposed methodology comprises orientation and position alignment based on the visually estimated OOI poses, whereas camera-to-robot calibration is conducted based on motion utilizing visual SLAM. The methods seek to avert the inaccuracies resulting from rigid-body--based kinematics of structurally flexible HDLR manipulators via image-based algorithms. To train deep neural networks for OOI pose estimation, only synthetic data are utilized. The methods are validated in a real-world setting using an HDLR manipulator with a 5 m reach. The experimental results demonstrate that an image-based average tool positioning error of less than 2 mm along the non-depth axes is achieved, which facilitates a new way to increase the task flexibility and automation level of non-rigid HDLR manipulators.

SLAM in the Dark: Self-Supervised Learning of Pose, Depth and Loop-Closure from Thermal Images 2025-02-26
Show

Visual SLAM is essential for mobile robots, drone navigation, and VR/AR, but traditional RGB camera systems struggle in low-light conditions, driving interest in thermal SLAM, which excels in such environments. However, thermal imaging faces challenges like low contrast, high noise, and limited large-scale annotated datasets, restricting the use of deep learning in outdoor scenarios. We present DarkSLAM, a noval deep learning-based monocular thermal SLAM system designed for large-scale localization and reconstruction in complex lighting conditions.Our approach incorporates the Efficient Channel Attention (ECA) mechanism in visual odometry and the Selective Kernel Attention (SKA) mechanism in depth estimation to enhance pose accuracy and mitigate thermal depth degradation. Additionally, the system includes thermal depth-based loop closure detection and pose optimization, ensuring robust performance in low-texture thermal scenes. Extensive outdoor experiments demonstrate that DarkSLAM significantly outperforms existing methods like SC-Sfm-Learner and Shin et al., delivering precise localization and 3D dense mapping even in challenging nighttime environments.

GSORB-SLAM: Gaussian Splatting SLAM benefits from ORB features and Transmittance information 2025-02-22
Show

The emergence of 3D Gaussian Splatting (3DGS) has recently ignited a renewed wave of research in dense visual SLAM. However, existing approaches encounter challenges, including sensitivity to artifacts and noise, suboptimal selection of training viewpoints, and the absence of global optimization. In this paper, we propose GSORB-SLAM, a dense SLAM framework that integrates 3DGS with ORB features through a tightly coupled optimization pipeline. To mitigate the effects of noise and artifacts, we propose a novel geometric representation and optimization method for tracking, which significantly enhances localization accuracy and robustness. For high-fidelity mapping, we develop an adaptive Gaussian expansion and regularization method that facilitates compact yet expressive scene modeling while suppressing redundant primitives. Furthermore, we design a hybrid graph-based viewpoint selection mechanism that effectively reduces overfitting and accelerates convergence. Extensive evaluations across various datasets demonstrate that our system achieves state-of-the-art performance in both tracking precision-improving RMSE by 16.2% compared to ORB-SLAM2 baselines-and reconstruction quality-improving PSNR by 3.93 dB compared to 3DGS-SLAM baselines. The project: https://aczheng-cai.github.io/gsorb-slam.github.io/

3D Gaussian Splatting aided Localization for Large and Complex Indoor-Environments 2025-02-19
Show

The field of visual localization has been researched for several decades and has meanwhile found many practical applications. Despite the strong progress in this field, there are still challenging situations in which established methods fail. We present an approach to significantly improve the accuracy and reliability of established visual localization methods by adding rendered images. In detail, we first use a modern visual SLAM approach that provides a 3D Gaussian Splatting (3DGS) based map to create reference data. We demonstrate that enriching reference data with images rendered from 3DGS at randomly sampled poses significantly improves the performance of both geometry-based visual localization and Scene Coordinate Regression (SCR) methods. Through comprehensive evaluation in a large industrial environment, we analyze the performance impact of incorporating these additional rendered views.

Active Illumination for Visual Ego-Motion Estimation in the Dark 2025-02-19
Show

Visual Odometry (VO) and Visual SLAM (V-SLAM) systems often struggle in low-light and dark environments due to the lack of robust visual features. In this paper, we propose a novel active illumination framework to enhance the performance of VO and V-SLAM algorithms in these challenging conditions. The developed approach dynamically controls a moving light source to illuminate highly textured areas, thereby improving feature extraction and tracking. Specifically, a detector block, which incorporates a deep learning-based enhancing network, identifies regions with relevant features. Then, a pan-tilt controller is responsible for guiding the light beam toward these areas, so that to provide information-rich images to the ego-motion estimation algorithm. Experimental results on a real robotic platform demonstrate the effectiveness of the proposed method, showing a reduction in the pose estimation error up to 75% with respect to a traditional fixed lighting technique.

pySLAM: An Open-Source, Modular, and Extensible Framework for SLAM 2025-02-19
Show

pySLAM is an open-source Python framework for Visual SLAM, supporting monocular, stereo, and RGB-D cameras. It provides a flexible interface for integrating both classical and modern local features, making it adaptable to various SLAM tasks. The framework includes different loop closure methods, a volumetric reconstruction pipeline, and support for depth prediction models. Additionally, it offers a suite of tools for visual odometry and SLAM applications. Designed for both beginners and experienced researchers, pySLAM encourages community contributions, fostering collaborative development in the field of Visual SLAM.

GS-GVINS: A Tightly-integrated GNSS-Visual-Inertial Navigation System Augmented by 3D Gaussian Splatting 2025-02-16
Show

Recently, the emergence of 3D Gaussian Splatting (3DGS) has drawn significant attention in the area of 3D map reconstruction and visual SLAM. While extensive research has explored 3DGS for indoor trajectory tracking using visual sensor alone or in combination with Light Detection and Ranging (LiDAR) and Inertial Measurement Unit (IMU), its integration with GNSS for large-scale outdoor navigation remains underexplored. To address these concerns, we proposed GS-GVINS: a tightly-integrated GNSS-Visual-Inertial Navigation System augmented by 3DGS. This system leverages 3D Gaussian as a continuous differentiable scene representation in largescale outdoor environments, enhancing navigation performance through the constructed 3D Gaussian map. Notably, GS-GVINS is the first GNSS-Visual-Inertial navigation application that directly utilizes the analytical jacobians of SE3 camera pose with respect to 3D Gaussians. To maintain the quality of 3DGS rendering in extreme dynamic states, we introduce a motionaware 3D Gaussian pruning mechanism, updating the map based on relative pose translation and the accumulated opacity along the camera ray. For validation, we test our system under different driving environments: open-sky, sub-urban, and urban. Both self-collected and public datasets are used for evaluation. The results demonstrate the effectiveness of GS-GVINS in enhancing navigation accuracy across diverse driving environments.

PINGS: Gaussian Splatting Meets Distance Fields within a Point-Based Implicit Neural Map 2025-02-09
Show

Robots require high-fidelity reconstructions of their environment for effective operation. Such scene representations should be both, geometrically accurate and photorealistic to support downstream tasks. While this can be achieved by building distance fields from range sensors and radiance fields from cameras, the scalable incremental mapping of both fields consistently and at the same time with high quality remains challenging. In this paper, we propose a novel map representation that unifies a continuous signed distance field and a Gaussian splatting radiance field within an elastic and compact point-based implicit neural map. By enforcing geometric consistency between these fields, we achieve mutual improvements by exploiting both modalities. We devise a LiDAR-visual SLAM system called PINGS using the proposed map representation and evaluate it on several challenging large-scale datasets. Experimental results demonstrate that PINGS can incrementally build globally consistent distance and radiance fields encoded with a compact set of neural points. Compared to the state-of-the-art methods, PINGS achieves superior photometric and geometric rendering at novel views by leveraging the constraints from the distance field. Furthermore, by utilizing dense photometric cues and multi-view consistency from the radiance field, PINGS produces more accurate distance fields, leading to improved odometry estimation and mesh reconstruction.

14 pages, 8 figures
AutoLoop: Fast Visual SLAM Fine-tuning through Agentic Curriculum Learning 2025-01-15
Show

Current visual SLAM systems face significant challenges in balancing computational efficiency with robust loop closure handling. Traditional approaches require careful manual tuning and incur substantial computational overhead, while learning-based methods either lack explicit loop closure capabilities or implement them through computationally expensive methods. We present AutoLoop, a novel approach that combines automated curriculum learning with efficient fine-tuning for visual SLAM systems. Our method employs a DDPG (Deep Deterministic Policy Gradient) agent to dynamically adjust loop closure weights during training, eliminating the need for manual hyperparameter search while significantly reducing the required training steps. The approach pre-computes potential loop closure pairs offline and leverages them through an agent-guided curriculum, allowing the model to adapt efficiently to new scenarios. Experiments conducted on TartanAir for training and validated across multiple benchmarks including KITTI, EuRoC, ICL-NUIM and TUM RGB-D demonstrate that AutoLoop achieves comparable or superior performance while reducing training time by an order of magnitude compared to traditional approaches. AutoLoop provides a practical solution for rapid adaptation of visual SLAM systems, automating the weight tuning process that traditionally requires multiple manual iterations. Our results show that this automated curriculum strategy not only accelerates training but also maintains or improves the model's performance across diverse environmental conditions.

Self-Organizing Edge Computing Distribution Framework for Visual SLAM 2025-01-15
Show

Localization within a known environment is a crucial capability for mobile robots. Simultaneous Localization and Mapping (SLAM) is a prominent solution to this problem. SLAM is a framework that consists of a diverse set of computational tasks ranging from real-time tracking to computation-intensive map optimization. This combination can present a challenge for resource-limited mobile robots. Previously, edge-assisted SLAM methods have demonstrated promising real-time execution capabilities by offloading heavy computations while performing real-time tracking onboard. However, the common approach of utilizing a client-server architecture for offloading is sensitive to server and network failures. In this article, we propose a novel edge-assisted SLAM framework capable of self-organizing fully distributed SLAM execution across a network of devices or functioning on a single device without connectivity. The architecture consists of three layers and is designed to be device-agnostic, resilient to network failures, and minimally invasive to the core SLAM system. We have implemented and demonstrated the framework for monocular ORB SLAM3 and evaluated it in both fully distributed and standalone SLAM configurations against the ORB SLAM3. The experiment results demonstrate that the proposed design matches the accuracy and resource utilization of the monolithic approach while enabling collaborative execution.

8 pages, 5 figures
Towards Revisiting Visual Place Recognition for Joining Submaps in Multimap SLAM 2025-01-08
Show

Visual SLAM is a key technology for many autonomous systems. However, tracking loss can lead to the creation of disjoint submaps in multimap SLAM systems like ORB-SLAM3. Because of that, these systems employ submap merging strategies. As we show, these strategies are not always successful. In this paper, we investigate the impact of using modern VPR approaches for submap merging in visual SLAM. We argue that classical evaluation metrics are not sufficient to estimate the impact of a modern VPR component on the overall system. We show that naively replacing the VPR component does not leverage its full potential without requiring substantial interference in the original system. Because of that, we present a post-processing pipeline along with a set of metrics that allow us to estimate the impact of modern VPR components. We evaluate our approach on the NCLT and Newer College datasets using ORB-SLAM3 with NetVLAD and HDC-DELF as VPR components. Additionally, we present a simple approach for combining VPR with temporal consistency for map merging. We show that the map merging performance of ORB-SLAM3 can be improved. Building on these results, researchers in VPR can assess the potential of their approaches for SLAM systems.

Accep...

Accepted at TAROS 2024. This is the submitted version

Drift-free Visual SLAM using Digital Twins 2024-12-12
Show

Globally-consistent localization in urban environments is crucial for autonomous systems such as self-driving vehicles and drones, as well as assistive technologies for visually impaired people. Traditional Visual-Inertial Odometry (VIO) and Visual Simultaneous Localization and Mapping (VSLAM) methods, though adequate for local pose estimation, suffer from drift in the long term due to reliance on local sensor data. While GPS counteracts this drift, it is unavailable indoors and often unreliable in urban areas. An alternative is to localize the camera to an existing 3D map using visual-feature matching. This can provide centimeter-level accurate localization but is limited by the visual similarities between the current view and the map. This paper introduces a novel approach that achieves accurate and globally-consistent localization by aligning the sparse 3D point cloud generated by the VIO/VSLAM system to a digital twin using point-to-plane matching; no visual data association is needed. The proposed method provides a 6-DoF global measurement tightly integrated into the VIO/VSLAM system. Experiments run on a high-fidelity GPS simulator and real-world data collected from a drone demonstrate that our approach outperforms state-of-the-art VIO-GPS systems and offers superior robustness against viewpoint changes compared to the state-of-the-art Visual SLAM systems.

MegaSaM: Accurate, Fast, and Robust Structure and Motion from Casual Dynamic Videos 2024-12-06
Show

We present a system that allows for accurate, fast, and robust estimation of camera parameters and depth maps from casual monocular videos of dynamic scenes. Most conventional structure from motion and monocular SLAM techniques assume input videos that feature predominantly static scenes with large amounts of parallax. Such methods tend to produce erroneous estimates in the absence of these conditions. Recent neural network-based approaches attempt to overcome these challenges; however, such methods are either computationally expensive or brittle when run on dynamic videos with uncontrolled camera motion or unknown field of view. We demonstrate the surprising effectiveness of a deep visual SLAM framework: with careful modifications to its training and inference schemes, this system can scale to real-world videos of complex dynamic scenes with unconstrained camera paths, including videos with little camera parallax. Extensive experiments on both synthetic and real videos demonstrate that our system is significantly more accurate and robust at camera pose and depth estimation when compared with prior and concurrent work, with faster or comparable running times. See interactive results on our project page: https://mega-sam.github.io/

Proje...

Project page: https://mega-sam.github.io/

Look Ma, No Ground Truth! Ground-Truth-Free Tuning of Structure from Motion and Visual SLAM 2024-12-02
Show

Evaluation is critical to both developing and tuning Structure from Motion (SfM) and Visual SLAM (VSLAM) systems, but is universally reliant on high-quality geometric ground truth -- a resource that is not only costly and time-intensive but, in many cases, entirely unobtainable. This dependency on ground truth restricts SfM and SLAM applications across diverse environments and limits scalability to real-world scenarios. In this work, we propose a novel ground-truth-free (GTF) evaluation methodology that eliminates the need for geometric ground truth, instead using sensitivity estimation via sampling from both original and noisy versions of input images. Our approach shows strong correlation with traditional ground-truth-based benchmarks and supports GTF hyperparameter tuning. Removing the need for ground truth opens up new opportunities to leverage a much larger number of dataset sources, and for self-supervised and online tuning, with the potential for a data-driven breakthrough analogous to what has occurred in generative AI.

Uni-SLAM: Uncertainty-Aware Neural Implicit SLAM for Real-Time Dense Indoor Scene Reconstruction 2024-11-29
Show

Neural implicit fields have recently emerged as a powerful representation method for multi-view surface reconstruction due to their simplicity and state-of-the-art performance. However, reconstructing thin structures of indoor scenes while ensuring real-time performance remains a challenge for dense visual SLAM systems. Previous methods do not consider varying quality of input RGB-D data and employ fixed-frequency mapping process to reconstruct the scene, which could result in the loss of valuable information in some frames. In this paper, we propose Uni-SLAM, a decoupled 3D spatial representation based on hash grids for indoor reconstruction. We introduce a novel defined predictive uncertainty to reweight the loss function, along with strategic local-to-global bundle adjustment. Experiments on synthetic and real-world datasets demonstrate that our system achieves state-of-the-art tracking and mapping accuracy while maintaining real-time performance. It significantly improves over current methods with a 25% reduction in depth L1 error and a 66.86% completion rate within 1 cm on the Replica dataset, reflecting a more accurate reconstruction of thin structures. Project page: https://shaoxiang777.github.io/project/uni-slam/

Winte...

Winter Conference on Applications of Computer Vision (WACV 2025)

SGS-SLAM: Semantic Gaussian Splatting For Neural Dense SLAM 2024-11-24
Show

We present SGS-SLAM, the first semantic visual SLAM system based on Gaussian Splatting. It incorporates appearance, geometry, and semantic features through multi-channel optimization, addressing the oversmoothing limitations of neural implicit SLAM systems in high-quality rendering, scene understanding, and object-level geometry. We introduce a unique semantic feature loss that effectively compensates for the shortcomings of traditional depth and color losses in object optimization. Through a semantic-guided keyframe selection strategy, we prevent erroneous reconstructions caused by cumulative errors. Extensive experiments demonstrate that SGS-SLAM delivers state-of-the-art performance in camera pose estimation, map reconstruction, precise semantic segmentation, and object-level geometric accuracy, while ensuring real-time rendering capabilities.

LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments 2024-11-19
Show

We present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor scenes, overcoming the limitation of fixed resolution in traditional LiDAR mapping. The system aligns point clouds with Gaussian maps using shared covariance attributes for front-end tracking and integrates the normal orientation into the loss function to refines the Gaussian map. To reliably and stably update Gaussians outside the LiDAR field of view, we introduce a novel conditional Gaussian constraint that aligns these Gaussians closely with the nearest reliable ones. The targeted adjustment enables LiV-GS to achieve fast and accurate mapping with novel view synthesis at a rate of 7.98 FPS. Extensive comparative experiments demonstrate LiV-GS's superior performance in SLAM, image rendering and mapping. The successful cross-modal radar-LiDAR localization highlights the potential of LiV-GS for applications in cross-modal semantic positioning and object segmentation with Gaussian maps.

DG-SLAM: Robust Dynamic Gaussian Splatting SLAM with Hybrid Pose Optimization 2024-11-13
Show

Achieving robust and precise pose estimation in dynamic scenes is a significant research challenge in Visual Simultaneous Localization and Mapping (SLAM). Recent advancements integrating Gaussian Splatting into SLAM systems have proven effective in creating high-quality renderings using explicit 3D Gaussian models, significantly improving environmental reconstruction fidelity. However, these approaches depend on a static environment assumption and face challenges in dynamic environments due to inconsistent observations of geometry and photometry. To address this problem, we propose DG-SLAM, the first robust dynamic visual SLAM system grounded in 3D Gaussians, which provides precise camera pose estimation alongside high-fidelity reconstructions. Specifically, we propose effective strategies, including motion mask generation, adaptive Gaussian point management, and a hybrid camera tracking algorithm to improve the accuracy and robustness of pose estimation. Extensive experiments demonstrate that DG-SLAM delivers state-of-the-art performance in camera pose estimation, map reconstruction, and novel-view synthesis in dynamic scenes, outperforming existing methods meanwhile preserving real-time rendering ability.

MBA-SLAM: Motion Blur Aware Dense Visual SLAM with Radiance Fields Representation 2024-11-13
Show

Emerging 3D scene representations, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated their effectiveness in Simultaneous Localization and Mapping (SLAM) for photo-realistic rendering, particularly when using high-quality video sequences as input. However, existing methods struggle with motion-blurred frames, which are common in real-world scenarios like low-light or long-exposure conditions. This often results in a significant reduction in both camera localization accuracy and map reconstruction quality. To address this challenge, we propose a dense visual SLAM pipeline (i.e. MBA-SLAM) to handle severe motion-blurred inputs. Our approach integrates an efficient motion blur-aware tracker with either neural radiance fields or Gaussian Splatting based mapper. By accurately modeling the physical image formation process of motion-blurred images, our method simultaneously learns 3D scene representation and estimates the cameras' local trajectory during exposure time, enabling proactive compensation for motion blur caused by camera movement. In our experiments, we demonstrate that MBA-SLAM surpasses previous state-of-the-art methods in both camera localization and map reconstruction, showcasing superior performance across a range of datasets, including synthetic and real datasets featuring sharp images as well as those affected by motion blur, highlighting the versatility and robustness of our approach. Code is available at https://github.com/WU-CVGL/MBA-SLAM.

Lost in Tracking Translation: A Comprehensive Analysis of Visual SLAM in Human-Centered XR and IoT Ecosystems 2024-11-11
Show

Advancements in tracking algorithms have empowered nascent applications across various domains, from steering autonomous vehicles to guiding robots to enhancing augmented reality experiences for users. However, these algorithms are application-specific and do not work across applications with different types of motion; even a tracking algorithm designed for a given application does not work in scenarios deviating from highly standard conditions. For example, a tracking algorithm designed for robot navigation inside a building will not work for tracking the same robot in an outdoor environment. To demonstrate this problem, we evaluate the performance of the state-of-the-art tracking methods across various applications and scenarios. To inform our analysis, we first categorize algorithmic, environmental, and locomotion-related challenges faced by tracking algorithms. We quantitatively evaluate the performance using multiple tracking algorithms and representative datasets for a wide range of Internet of Things (IoT) and Extended Reality (XR) applications, including autonomous vehicles, drones, and humans. Our analysis shows that no tracking algorithm works across different applications and scenarios within applications. Ultimately, using the insights generated from our analysis, we discuss multiple approaches to improving the tracking performance using input data characterization, leveraging intermediate information, and output evaluation.

Map++: Towards User-Participatory Visual SLAM Systems with Efficient Map Expansion and Sharing 2024-11-04
Show

Constructing precise 3D maps is crucial for the development of future map-based systems such as self-driving and navigation. However, generating these maps in complex environments, such as multi-level parking garages or shopping malls, remains a formidable challenge. In this paper, we introduce a participatory sensing approach that delegates map-building tasks to map users, thereby enabling cost-effective and continuous data collection. The proposed method harnesses the collective efforts of users, facilitating the expansion and ongoing update of the maps as the environment evolves. We realized this approach by developing Map++, an efficient system that functions as a plug-and-play extension, supporting participatory map-building based on existing SLAM algorithms. Map++ addresses a plethora of scalability issues in this participatory map-building system by proposing a set of lightweight, application-layer protocols. We evaluated Map++ in four representative settings: an indoor garage, an outdoor plaza, a public SLAM benchmark, and a simulated environment. The results demonstrate that Map++ can reduce traffic volume by approximately 46% with negligible degradation in mapping accuracy, i.e., less than 0.03m compared to the baseline system. It can support approximately $2 \times$ as many concurrent users as the baseline under the same network bandwidth. Additionally, for users who travel on already-mapped trajectories, they can directly utilize the existing maps for localization and save 47% of the CPU usage.

15 pa...

15 pages, 15 figures. Accepted by MobiCom 2024

BodySLAM: A Generalized Monocular Visual SLAM Framework for Surgical Applications 2024-11-04
Show

Endoscopic surgery relies on two-dimensional views, posing challenges for surgeons in depth perception and instrument manipulation. While Monocular Visual Simultaneous Localization and Mapping (MVSLAM) has emerged as a promising solution, its implementation in endoscopic procedures faces significant challenges due to hardware limitations, such as the use of a monocular camera and the absence of odometry sensors. This study presents BodySLAM, a robust deep learning-based MVSLAM approach that addresses these challenges through three key components: CycleVO, a novel unsupervised monocular pose estimation module; the integration of the state-of-the-art Zoe architecture for monocular depth estimation; and a 3D reconstruction module creating a coherent surgical map. The approach is rigorously evaluated using three publicly available datasets (Hamlyn, EndoSLAM, and SCARED) spanning laparoscopy, gastroscopy, and colonoscopy scenarios, and benchmarked against four state-of-the-art methods. Results demonstrate that CycleVO exhibited competitive performance with the lowest inference time among pose estimation methods, while maintaining robust generalization capabilities, whereas Zoe significantly outperformed existing algorithms for depth estimation in endoscopy. BodySLAM's strong performance across diverse endoscopic scenarios demonstrates its potential as a viable MVSLAM solution for endoscopic applications.

16 pages, 7 figures
LGU-SLAM: Learnable Gaussian Uncertainty Matching with Deformable Correlation Sampling for Deep Visual SLAM 2024-10-30
Show

Deep visual Simultaneous Localization and Mapping (SLAM) techniques, e.g., DROID, have made significant advancements by leveraging deep visual odometry on dense flow fields. In general, they heavily rely on global visual similarity matching. However, the ambiguous similarity interference in uncertain regions could often lead to excessive noise in correspondences, ultimately misleading SLAM in geometric modeling. To address this issue, we propose a Learnable Gaussian Uncertainty (LGU) matching. It mainly focuses on precise correspondence construction. In our scheme, a learnable 2D Gaussian uncertainty model is designed to associate matching-frame pairs. It could generate input-dependent Gaussian distributions for each correspondence map. Additionally, a multi-scale deformable correlation sampling strategy is devised to adaptively fine-tune the sampling of each direction by a priori look-up ranges, enabling reliable correlation construction. Furthermore, a KAN-bias GRU component is adopted to improve a temporal iterative enhancement for accomplishing sophisticated spatio-temporal modeling with limited parameters. The extensive experiments on real-world and synthetic datasets are conducted to validate the effectiveness and superiority of our method.

QueensCAMP: an RGB-D dataset for robust Visual SLAM 2024-10-16
Show

Visual Simultaneous Localization and Mapping (VSLAM) is a fundamental technology for robotics applications. While VSLAM research has achieved significant advancements, its robustness under challenging situations, such as poor lighting, dynamic environments, motion blur, and sensor failures, remains a challenging issue. To address these challenges, we introduce a novel RGB-D dataset designed for evaluating the robustness of VSLAM systems. The dataset comprises real-world indoor scenes with dynamic objects, motion blur, and varying illumination, as well as emulated camera failures, including lens dirt, condensation, underexposure, and overexposure. Additionally, we offer open-source scripts for injecting camera failures into any images, enabling further customization by the research community. Our experiments demonstrate that ORB-SLAM2, a traditional VSLAM algorithm, and TartanVO, a Deep Learning-based VO algorithm, can experience performance degradation under these challenging conditions. Therefore, this dataset and the camera failure open-source tools provide a valuable resource for developing more robust VSLAM systems capable of handling real-world challenges.

6 pages
An Expeditious Spatial Mean Radiant Temperature Mapping Framework using Visual SLAM and Semantic Segmentation 2024-10-12
Show

Ensuring thermal comfort is essential for the well-being and productivity of individuals in built environments. Of the various thermal comfort indicators, the mean radiant temperature (MRT) is very challenging to measure. Most common measurement methodologies are time-consuming and not user-friendly. To address this issue, this paper proposes a novel MRT measurement framework that uses visual simultaneous localization and mapping (SLAM) and semantic segmentation techniques. The proposed approach follows the rule of thumb of the traditional MRT calculation method using surface temperature and view factors. However, it employs visual SLAM and creates a 3D thermal point cloud with enriched surface temperature information. The framework then implements Grounded SAM, a new object detection and segmentation tool to extract features with distinct temperature profiles on building surfaces. The detailed segmentation of thermal features not only reduces potential errors in the calculation of the MRT but also provides an efficient reconstruction of the spatial MRT distribution in the indoor environment. We also validate the calculation results with the reference measurement methodology. This data-driven framework offers faster and more efficient MRT measurements and spatial mapping than conventional methods. It can enable the direct engagement of researchers and practitioners in MRT measurements and contribute to research on thermal comfort and radiant cooling and heating systems.

Accep...

Accepted by 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop

Monocular Visual Place Recognition in LiDAR Maps via Cross-Modal State Space Model and Multi-View Matching 2024-10-08
Show

Achieving monocular camera localization within pre-built LiDAR maps can bypass the simultaneous mapping process of visual SLAM systems, potentially reducing the computational overhead of autonomous localization. To this end, one of the key challenges is cross-modal place recognition, which involves retrieving 3D scenes (point clouds) from a LiDAR map according to online RGB images. In this paper, we introduce an efficient framework to learn descriptors for both RGB images and point clouds. It takes visual state space model (VMamba) as the backbone and employs a pixel-view-scene joint training strategy for cross-modal contrastive learning. To address the field-of-view differences, independent descriptors are generated from multiple evenly distributed viewpoints for point clouds. A visible 3D points overlap strategy is then designed to quantify the similarity between point cloud views and RGB images for multi-view supervision. Additionally, when generating descriptors from pixel-level features using NetVLAD, we compensate for the loss of geometric information, and introduce an efficient scheme for multi-view generation. Experimental results on the KITTI and KITTI-360 datasets demonstrate the effectiveness and generalization of our method. The code will be released upon acceptance.

SharpSLAM: 3D Object-Oriented Visual SLAM with Deblurring for Agile Drones 2024-10-07
Show

The paper focuses on the algorithm for improving the quality of 3D reconstruction and segmentation in DSP-SLAM by enhancing the RGB image quality. SharpSLAM algorithm developed by us aims to decrease the influence of high dynamic motion on visual object-oriented SLAM through image deblurring, improving all aspects of object-oriented SLAM, including localization, mapping, and object reconstruction. The experimental results revealed noticeable improvement in object detection quality, with F-score increased from 82.9% to 86.2% due to the higher number of features and corresponding map points. The RMSE of signed distance function has also decreased from 17.2 to 15.4 cm. Furthermore, our solution has enhanced object positioning, with an increase in the IoU from 74.5% to 75.7%. SharpSLAM algorithm has the potential to highly improve the quality of 3D reconstruction and segmentation in DSP-SLAM and to impact a wide range of fields, including robotics, autonomous vehicles, and augmented reality.

Manus...

Manuscript accepted to IEEE Telepresence 2024

High-Speed Stereo Visual SLAM for Low-Powered Computing Devices 2024-10-05
Show

We present an accurate and GPU-accelerated Stereo Visual SLAM design called Jetson-SLAM. It exhibits frame-processing rates above 60FPS on NVIDIA's low-powered 10W Jetson-NX embedded computer and above 200FPS on desktop-grade 200W GPUs, even in stereo configuration and in the multiscale setting. Our contributions are threefold: (i) a Bounded Rectification technique to prevent tagging many non-corner points as a corner in FAST detection, improving SLAM accuracy. (ii) A novel Pyramidal Culling and Aggregation (PyCA) technique that yields robust features while suppressing redundant ones at high speeds by harnessing a GPU device. PyCA uses our new Multi-Location Per Thread culling strategy (MLPT) and Thread-Efficient Warp-Allocation (TEWA) scheme for GPU to enable Jetson-SLAM achieving high accuracy and speed on embedded devices. (iii) Jetson-SLAM library achieves resource efficiency by having a data-sharing mechanism. Our experiments on three challenging datasets: KITTI, EuRoC, and KAIST-VIO, and two highly accurate SLAM backends: Full-BA and ICE-BA show that Jetson-SLAM is the fastest available accurate and GPU-accelerated SLAM system (Fig. 1).

Compact 3D Gaussian Splatting For Dense Visual SLAM 2024-09-27
Show

Recent work has shown that 3D Gaussian-based SLAM enables high-quality reconstruction, accurate pose estimation, and real-time rendering of scenes. However, these approaches are built on a tremendous number of redundant 3D Gaussian ellipsoids, leading to high memory and storage costs, and slow training speed. To address the limitation, we propose a compact 3D Gaussian Splatting SLAM system that reduces the number and the parameter size of Gaussian ellipsoids. A sliding window-based masking strategy is first proposed to reduce the redundant ellipsoids. Then we observe that the covariance matrix (geometry) of most 3D Gaussian ellipsoids are extremely similar, which motivates a novel geometry codebook to compress 3D Gaussian geometric attributes, i.e., the parameters. Robust and accurate pose estimation is achieved by a global bundle adjustment method with reprojection loss. Extensive experiments demonstrate that our method achieves faster training and rendering speed while maintaining the state-of-the-art (SOTA) quality of the scene representation.

Inline Photometrically Calibrated Hybrid Visual SLAM 2024-09-25
Show

This paper presents an integrated approach to Visual SLAM, merging online sequential photometric calibration within a Hybrid direct-indirect visual SLAM (H-SLAM). Photometric calibration helps normalize pixel intensity values under different lighting conditions, and thereby improves the direct component of our H-SLAM. A tangential benefit also results to the indirect component of H-SLAM given that the detected features are more stable across variable lighting conditions. Our proposed photometrically calibrated H-SLAM is tested on several datasets, including the TUM monoVO as well as on a dataset we created. Calibrated H-SLAM outperforms other state of the art direct, indirect, and hybrid Visual SLAM systems in all the experiments. Furthermore, in online SLAM tested at our site, it also significantly outperformed the other SLAM Systems.

NeRF-Supervised Feature Point Detection and Description 2024-09-20
Show

Feature point detection and description is the backbone for various computer vision applications, such as Structure-from-Motion, visual SLAM, and visual place recognition. While learning-based methods have surpassed traditional handcrafted techniques, their training often relies on simplistic homography-based simulations of multi-view perspectives, limiting model generalisability. This paper presents a novel approach leveraging Neural Radiance Fields (NeRFs) to generate a diverse and realistic dataset consisting of indoor and outdoor scenes. Our proposed methodology adapts state-of-the-art feature detectors and descriptors for training on multi-view NeRF-synthesised data, with supervision achieved through perspective projective geometry. Experiments demonstrate that the proposed methodology achieves competitive or superior performance on standard benchmarks for relative pose estimation, point cloud registration, and homography estimation while requiring significantly less training data and time compared to existing approaches.

Active Collaborative Visual SLAM exploiting ORB Features 2024-09-09
Show

In autonomous robotics, a significant challenge involves devising robust solutions for Active Collaborative SLAM (AC-SLAM). This process requires multiple robots to cooperatively explore and map an unknown environment by intelligently coordinating their movements and sensor data acquisition. In this article, we present an efficient visual AC-SLAM method using aerial and ground robots for environment exploration and mapping. We propose an efficient frontiers filtering method that takes into account the common IoU map frontiers and reduces the frontiers for each robot. Additionally, we also present an approach to guide robots to previously visited goal positions to promote loop closure to reduce SLAM uncertainty. The proposed method is implemented in ROS and evaluated through simulations on publicly available datasets and similar methods, achieving an accumulative average of 59% of increase in area coverage.

6 Pag...

6 Pages, 7 Figures, 2 Tables. arXiv admin note: text overlap with arXiv:2310.01967

Addressing the challenges of loop detection in agricultural environments 2024-08-30
Show

While visual SLAM systems are well studied and achieve impressive results in indoor and urban settings, natural, outdoor and open-field environments are much less explored and still present relevant research challenges. Visual navigation and local mapping have shown a relatively good performance in open-field environments. However, globally consistent mapping and long-term localization still depend on the robustness of loop detection and closure, for which the literature is scarce. In this work we propose a novel method to pave the way towards robust loop detection in open fields, particularly in agricultural settings, based on local feature search and stereo geometric refinement, with a final stage of relative pose estimation. Our method consistently achieves good loop detections, with a median error of 15cm. We aim to characterize open fields as a novel environment for loop detection, understanding the limitations and problems that arise when dealing with them.

Enhanced Visual SLAM for Collision-free Driving with Lightweight Autonomous Cars 2024-08-21
Show

The paper presents a vision-based obstacle avoidance strategy for lightweight self-driving cars that can be run on a CPU-only device using a single RGB-D camera. The method consists of two steps: visual perception and path planning. The visual perception part uses ORBSLAM3 enhanced with optical flow to estimate the car's poses and extract rich texture information from the scene. In the path planning phase, we employ a method combining a control Lyapunov function and control barrier function in the form of quadratic program (CLF-CBF-QP) together with an obstacle shape reconstruction process (SRP) to plan safe and stable trajectories. To validate the performance and robustness of the proposed method, simulation experiments were conducted with a car in various complex indoor environments using the Gazebo simulation environment. Our method can effectively avoid obstacles in the scenes. The proposed algorithm outperforms benchmark algorithms in achieving more stable and shorter trajectories across multiple simulated scenes.

16 pa...

16 pages; Submitted to a journal

Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis 2024-08-21
Show

Conventional geometry-based SLAM systems lack dense 3D reconstruction capabilities since their data association usually relies on feature correspondences. Additionally, learning-based SLAM systems often fall short in terms of real-time performance and accuracy. Balancing real-time performance with dense 3D reconstruction capabilities is a challenging problem. In this paper, we propose a real-time RGB-D SLAM system that incorporates a novel view synthesis technique, 3D Gaussian Splatting, for 3D scene representation and pose estimation. This technique leverages the real-time rendering performance of 3D Gaussian Splatting with rasterization and allows for differentiable optimization in real time through CUDA implementation. We also enable mesh reconstruction from 3D Gaussians for explicit dense 3D reconstruction. To estimate accurate camera poses, we utilize a rotation-translation decoupled strategy with inverse optimization. This involves iteratively updating both in several iterations through gradient-based optimization. This process includes differentiably rendering RGB, depth, and silhouette maps and updating the camera parameters to minimize a combined loss of photometric loss, depth geometry loss, and visibility loss, given the existing 3D Gaussian map. However, 3D Gaussian Splatting (3DGS) struggles to accurately represent surfaces due to the multi-view inconsistency of 3D Gaussians, which can lead to reduced accuracy in both camera pose estimation and scene reconstruction. To address this, we utilize depth priors as additional regularization to enforce geometric constraints, thereby improving the accuracy of both pose estimation and 3D reconstruction. We also provide extensive experimental results on public benchmark datasets to demonstrate the effectiveness of our proposed methods in terms of pose accuracy, geometric accuracy, and rendering performance.

DynaPix SLAM: A Pixel-Based Dynamic Visual SLAM Approach 2024-08-20
Show

Visual Simultaneous Localization and Mapping (V-SLAM) methods achieve remarkable performance in static environments, but face challenges in dynamic scenes where moving objects severely affect their core modules. To avoid this, dynamic V-SLAM approaches often leverage semantic information, geometric constraints, or optical flow. However, these methods are limited by imprecise estimations and their reliance on the accuracy of deep-learning models. Moreover, predefined thresholds for static/dynamic classification, the a-priori selection of dynamic object classes, and the inability to recognize unknown or unexpected moving objects, often degrade their performance. To address these limitations, we introduce DynaPix, a novel semantic-free V-SLAM system based on per-pixel motion probability estimation and an improved pose optimization process. The per-pixel motion probability is estimated using a static background differencing method on image data and optical flows computed on splatted frames. With DynaPix, we fully integrate these probabilities into map point selection and apply them through weighted bundle adjustment within the tracking and optimization modules of ORB-SLAM2. We thoroughly evaluate our method using the GRADE and TUM RGB-D datasets, showing significantly lower trajectory errors and longer tracking times in both static and dynamic sequences. The source code, datasets, and results are available at https://dynapix.is.tue.mpg.de/.

Cheng...

Chenghao Xu and Elia Bonetto contributed equally to this work as first authors. 19 pages, 4 tables, 6 figures. Includes supplementary material

Advancements in Translation Accuracy for Stereo Visual-Inertial Initialization 2024-08-18
Show

As the current initialization method in the state-of-the-art Stereo Visual-Inertial SLAM framework, ORB-SLAM3 has limitations. Its success depends on the performance of the pure stereo SLAM system and is based on the underlying assumption that pure visual SLAM can accurately estimate the camera trajectory, which is essential for inertial parameter estimation. Meanwhile, the further improved initialization method for ORB-SLAM3, known as Stereo-NEC, is time-consuming due to applying keypoint tracking to estimate gyroscope bias with normal epipolar constraints. To address the limitations of previous methods, this paper proposes a method aimed at enhancing translation accuracy during the initialization stage. The fundamental concept of our method is to improve the translation estimate with a 3 Degree-of-Freedom (DoF) Bundle Adjustment (BA), independently, while the rotation estimate is fixed, instead of using ORB-SLAM3's 6-DoF BA. Additionally, the rotation estimate will be updated by considering IMU measurements and gyroscope bias, unlike ORB-SLAM3's rotation, which is directly obtained from stereo visual odometry and may yield inferior results when operating in challenging scenarios. We also conduct extensive evaluations on the public benchmark, the EuRoC dataset, demonstrating that our method excels in accuracy.

GOReloc: Graph-based Object-Level Relocalization for Visual SLAM 2024-08-15
Show

This article introduces a novel method for object-level relocalization of robotic systems. It determines the pose of a camera sensor by robustly associating the object detections in the current frame with 3D objects in a lightweight object-level map. Object graphs, considering semantic uncertainties, are constructed for both the incoming camera frame and the pre-built map. Objects are represented as graph nodes, and each node employs unique semantic descriptors based on our devised graph kernels. We extract a subgraph from the target map graph by identifying potential object associations for each object detection, then refine these associations and pose estimations using a RANSAC-inspired strategy. Experiments on various datasets demonstrate that our method achieves more accurate data association and significantly increases relocalization success rates compared to baseline methods. The implementation of our method is released at \url{https://github.com/yutongwangBIT/GOReloc}.

8 pag...

8 pages, accepted by IEEE RAL

Deep Patch Visual SLAM 2024-08-03
Show

Recent work in visual SLAM has shown the effectiveness of using deep network backbones. Despite excellent accuracy, however, such approaches are often expensive to run or do not generalize well zero-shot. Their runtime can also fluctuate wildly while their frontend and backend fight for access to GPU resources. To address these problems, we introduce Deep Patch Visual (DPV) SLAM, a method for monocular visual SLAM on a single GPU. DPV-SLAM maintains a high minimum framerate and small memory overhead (5-7G) compared to existing deep SLAM systems. On real-world datasets, DPV-SLAM runs at 1x-4x real-time framerates. We achieve comparable accuracy to DROID-SLAM on EuRoC and TartanAir while running 2.5x faster using a fraction of the memory. DPV-SLAM is an extension to the DPVO visual odometry system; its code can be found in the same repository: https://github.com/princeton-vl/DPVO

Solving Short-Term Relocalization Problems In Monocular Keyframe Visual SLAM Using Spatial And Semantic Data 2024-07-28
Show

In Monocular Keyframe Visual Simultaneous Localization and Mapping (MKVSLAM) frameworks, when incremental position tracking fails, global pose has to be recovered in a short-time window, also known as short-term relocalization. This capability is crucial for mobile robots to have reliable navigation, build accurate maps, and have precise behaviors around human collaborators. This paper focuses on the development of robust short-term relocalization capabilities for mobile robots using a monocular camera system. A novel multimodal keyframe descriptor is introduced, that contains semantic information of objects detected in the environment and the spatial information of the camera. Using this descriptor, a new Keyframe-based Place Recognition (KPR) method is proposed that is formulated as a multi-stage keyframe filtering algorithm, leading to a new relocalization pipeline for MKVSLAM systems. The proposed approach is evaluated over several indoor GPS denied datasets and demonstrates accurate pose recovery, in comparison to a bag-of-words approach.

8 pag...

8 pages, Keywords: VSLAM, Localization, Semantics. Presented in 2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)

VoxDepth: Rectification of Depth Images on Edge Devices 2024-07-21
Show

Autonomous mobile robots like self-flying drones and industrial robots heavily depend on depth images to perform tasks such as 3D reconstruction and visual SLAM. However, the presence of inaccuracies in these depth images can greatly hinder the effectiveness of these applications, resulting in sub-optimal results. Depth images produced by commercially available cameras frequently exhibit noise, which manifests as flickering pixels and erroneous patches. ML-based methods to rectify these images are unsuitable for edge devices that have very limited computational resources. Non-ML methods are much faster but have limited accuracy, especially for correcting errors that are a result of occlusion and camera movement. We propose a scheme called VoxDepth that is fast, accurate, and runs very well on edge devices. It relies on a host of novel techniques: 3D point cloud construction and fusion, and using it to create a template that can fix erroneous depth images. VoxDepth shows superior results on both synthetic and real-world datasets. We demonstrate a 31% improvement in quality as compared to state-of-the-art methods on real-world depth datasets, while maintaining a competitive framerate of 27 FPS (frames per second).

I$^2$-SLAM: Inverting Imaging Process for Robust Photorealistic Dense SLAM 2024-07-16
Show

We present an inverse image-formation module that can enhance the robustness of existing visual SLAM pipelines for casually captured scenarios. Casual video captures often suffer from motion blur and varying appearances, which degrade the final quality of coherent 3D visual representation. We propose integrating the physical imaging into the SLAM system, which employs linear HDR radiance maps to collect measurements. Specifically, individual frames aggregate images of multiple poses along the camera trajectory to explain prevalent motion blur in hand-held videos. Additionally, we accommodate per-frame appearance variation by dedicating explicit variables for image formation steps, namely white balance, exposure time, and camera response function. Through joint optimization of additional variables, the SLAM pipeline produces high-quality images with more accurate trajectories. Extensive experiments demonstrate that our approach can be incorporated into recent visual SLAM pipelines using various scene representations, such as neural radiance fields or Gaussian splatting.

ECCV 2024
Object-Oriented Material Classification and 3D Clustering for Improved Semantic Perception and Mapping in Mobile Robots 2024-07-08
Show

Classification of different object surface material types can play a significant role in the decision-making algorithms for mobile robots and autonomous vehicles. RGB-based scene-level semantic segmentation has been well-addressed in the literature. However, improving material recognition using the depth modality and its integration with SLAM algorithms for 3D semantic mapping could unlock new potential benefits in the robotics perception pipeline. To this end, we propose a complementarity-aware deep learning approach for RGB-D-based material classification built on top of an object-oriented pipeline. The approach further integrates the ORB-SLAM2 method for 3D scene mapping with multiscale clustering of the detected material semantics in the point cloud map generated by the visual SLAM algorithm. Extensive experimental results with existing public datasets and newly contributed real-world robot datasets demonstrate a significant improvement in material classification and 3D clustering accuracy compared to state-of-the-art approaches for 3D semantic scene mapping.

Accep...

Accepted to IROS 2024

Visual Inertial SLAM

Title Date Abstract Comment
AQUA-SLAM: Tightly-Coupled Underwater Acoustic-Visual-Inertial SLAM with Sensor Calibration 2025-03-14
Show

Underwater environments pose significant challenges for visual Simultaneous Localization and Mapping (SLAM) systems due to limited visibility, inadequate illumination, and sporadic loss of structural features in images. Addressing these challenges, this paper introduces a novel, tightly-coupled Acoustic-Visual-Inertial SLAM approach, termed AQUA-SLAM, to fuse a Doppler Velocity Log (DVL), a stereo camera, and an Inertial Measurement Unit (IMU) within a graph optimization framework. Moreover, we propose an efficient sensor calibration technique, encompassing multi-sensor extrinsic calibration (among the DVL, camera and IMU) and DVL transducer misalignment calibration, with a fast linear approximation procedure for real-time online execution. The proposed methods are extensively evaluated in a tank environment with ground truth, and validated for offshore applications in the North Sea. The results demonstrate that our method surpasses current state-of-the-art underwater and visual-inertial SLAM systems in terms of localization accuracy and robustness. The proposed system will be made open-source for the community.

Visual-Inertial SLAM for Unstructured Outdoor Environments: Benchmarking the Benefits and Computational Costs of Loop Closing 2025-03-07
Show

Simultaneous Localization and Mapping (SLAM) is essential for mobile robotics, enabling autonomous navigation in dynamic, unstructured outdoor environments without relying on external positioning systems. These environments pose significant challenges due to variable lighting, weather conditions, and complex terrain. Visual-Inertial SLAM has emerged as a promising solution for robust localization under such conditions. This paper benchmarks several open-source Visual-Inertial SLAM systems, including traditional methods (ORB-SLAM3, VINS-Fusion, OpenVINS, Kimera, and SVO Pro) and learning-based approaches (HFNet-SLAM, AirSLAM), to evaluate their performance in unstructured natural outdoor settings. We focus on the impact of loop closing on localization accuracy and computational demands, providing a comprehensive analysis of these systems' effectiveness in real-world environments and especially their application to embedded systems in outdoor robotics. Our contributions further include an assessment of varying frame rates on localization accuracy and computational load. The findings highlight the importance of loop closing in improving localization accuracy while managing computational resources efficiently, offering valuable insights for optimizing Visual-Inertial SLAM systems for practical outdoor applications in mobile robotics. The dataset and the benchmark code are available under https://github.com/iis-esslingen/vi-slam_lc_benchmark.

22 pa...

22 pages, 8 figures, 7 tables

Uncertainty-Aware Visual-Inertial SLAM with Volumetric Occupancy Mapping 2025-03-07
Show

We propose visual-inertial simultaneous localization and mapping that tightly couples sparse reprojection errors, inertial measurement unit pre-integrals, and relative pose factors with dense volumetric occupancy mapping. Hereby depth predictions from a deep neural network are fused in a fully probabilistic manner. Specifically, our method is rigorously uncertainty-aware: first, we use depth and uncertainty predictions from a deep network not only from the robot's stereo rig, but we further probabilistically fuse motion stereo that provides depth information across a range of baselines, therefore drastically increasing mapping accuracy. Next, predicted and fused depth uncertainty propagates not only into occupancy probabilities but also into alignment factors between generated dense submaps that enter the probabilistic nonlinear least squares estimator. This submap representation offers globally consistent geometry at scale. Our method is thoroughly evaluated in two benchmark datasets, resulting in localization and mapping accuracy that exceeds the state of the art, while simultaneously offering volumetric occupancy directly usable for downstream robotic planning and control in real-time.

7 pag...

7 pages, 4 figures, 5 tables, accepted in ICRA 2025

Efficient Submap-based Autonomous MAV Exploration using Visual-Inertial SLAM Configurable for LiDARs or Depth Cameras 2025-03-05
Show

Autonomous exploration of unknown space is an essential component for the deployment of mobile robots in the real world. Safe navigation is crucial for all robotics applications and requires accurate and consistent maps of the robot's surroundings. To achieve full autonomy and allow deployment in a wide variety of environments, the robot must rely on on-board state estimation which is prone to drift over time. We propose a Micro Aerial Vehicle (MAV) exploration framework based on local submaps to allow retaining global consistency by applying loop-closure corrections to the relative submap poses. To enable large-scale exploration we efficiently compute global, environment-wide frontiers from the local submap frontiers and use a sampling-based next-best-view exploration planner. Our method seamlessly supports using either a LiDAR sensor or a depth camera, making it suitable for different kinds of MAV platforms. We perform comparative evaluations in simulation against a state-of-the-art submap-based exploration framework to showcase the efficiency and reconstruction quality of our approach. Finally, we demonstrate the applicability of our method to real-world MAVs, one equipped with a LiDAR and the other with a depth camera. Video available at https://youtu.be/Uf5fwmYcuq4 .

In pr...

In proceedings of the IEEE International Conference on Robotics and Automation, 2025. 7 pages, 8 figures, for the accompanying video see https://youtu.be/Uf5fwmYcuq4

MLINE-VINS: Robust Monocular Visual-Inertial SLAM With Flow Manhattan and Line Features 2025-03-03
Show

In this paper we introduce MLINE-VINS, a novel monocular visual-inertial odometry (VIO) system that leverages line features and Manhattan Word assumption. Specifically, for line matching process, we propose a novel geometric line optical flow algorithm that efficiently tracks line features with varying lengths, whitch is do not require detections and descriptors in every frame. To address the instability of Manhattan estimation from line features, we propose a tracking-by-detection module that consistently tracks and optimizes Manhattan framse in consecutive images. By aligning the Manhattan World with the VIO world frame, the tracking could restart using the latest pose from back-end, simplifying the coordinate transformations within the system. Furthermore, we implement a mechanism to validate Manhattan frames and a novel global structural constraints back-end optimization. Extensive experiments results on vairous datasets, including benchmark and self-collected datasets, show that the proposed approach outperforms existing methods in terms of accuracy and long-range robustness. The source code of our method is available at: https://github.com/LiHaoy-ux/MLINE-VINS.

RUSSO: Robust Underwater SLAM with Sonar Optimization against Visual Degradation 2025-03-03
Show

Visual degradation in underwater environments poses unique and significant challenges, which distinguishes underwater SLAM from popular vision-based SLAM on the ground. In this paper, we propose RUSSO, a robust underwater SLAM system which fuses stereo camera, inertial measurement unit (IMU), and imaging sonar to achieve robust and accurate localization in challenging underwater environments for 6 degrees of freedom (DoF) estimation. During visual degradation, the system is reduced to a sonar-inertial system estimating 3-DoF poses. The sonar pose estimation serves as a strong prior for IMU propagation, thereby enhancing the reliability of pose estimation with IMU propagation. Additionally, we propose a SLAM initialization method that leverages the imaging sonar to counteract the lack of visual features during the initialization stage of SLAM. We extensively validate RUSSO through experiments in simulator, pool, and sea scenarios. The results demonstrate that RUSSO achieves better robustness and localization accuracy compared to the state-of-the-art visual-inertial SLAM systems, especially in visually challenging scenarios. To the best of our knowledge, this is the first time fusing stereo camera, IMU, and imaging sonar to realize robust underwater SLAM against visual degradation.

LVI-GS: Tightly-coupled LiDAR-Visual-Inertial SLAM using 3D Gaussian Splatting 2024-11-05
Show

3D Gaussian Splatting (3DGS) has shown its ability in rapid rendering and high-fidelity mapping. In this paper, we introduce LVI-GS, a tightly-coupled LiDAR-Visual-Inertial mapping framework with 3DGS, which leverages the complementary characteristics of LiDAR and image sensors to capture both geometric structures and visual details of 3D scenes. To this end, the 3D Gaussians are initialized from colourized LiDAR points and optimized using differentiable rendering. In order to achieve high-fidelity mapping, we introduce a pyramid-based training approach to effectively learn multi-level features and incorporate depth loss derived from LiDAR measurements to improve geometric feature perception. Through well-designed strategies for Gaussian-Map expansion, keyframe selection, thread management, and custom CUDA acceleration, our framework achieves real-time photo-realistic mapping. Numerical experiments are performed to evaluate the superior performance of our method compared to state-of-the-art 3D reconstruction systems.

SuperVINS: A Real-Time Visual-Inertial SLAM Framework for Challenging Imaging Conditions 2024-11-03
Show

The traditional visual-inertial SLAM system often struggles with stability under low-light or motion-blur conditions, leading to potential lost of trajectory tracking. High accuracy and robustness are essential for the long-term and stable localization capabilities of SLAM systems. Addressing the challenges of enhancing robustness and accuracy in visual-inertial SLAM, this paper propose SuperVINS, a real-time visual-inertial SLAM framework designed for challenging imaging conditions. In contrast to geometric modeling, deep learning features are capable of fully leveraging the implicit information present in images, which is often not captured by geometric features. Therefore, SuperVINS, developed as an enhancement of VINS-Fusion, integrates the deep learning neural network model SuperPoint for feature point extraction and loop closure detection. At the same time, a deep learning neural network LightGlue model for associating feature points is integrated in front-end feature matching. A feature matching enhancement strategy based on the RANSAC algorithm is proposed. The system is allowed to set different masks and RANSAC thresholds for various environments, thereby balancing computational cost and localization accuracy. Additionally, it allows for flexible training of specific SuperPoint bag of words tailored for loop closure detection in particular environments. The system enables real-time localization and mapping. Experimental validation on the well-known EuRoC dataset demonstrates that SuperVINS is comparable to other visual-inertial SLAM system in accuracy and robustness across the most challenging sequences. This paper analyzes the advantages of SuperVINS in terms of accuracy, real-time performance, and robustness. To facilitate knowledge exchange within the field, we have made the code for this paper publicly available.

Visual-Inertial SLAM as Simple as A, B, VINS 2024-09-22
Show

We present AB-VINS, a different kind of visual-inertial SLAM system. Unlike most popular VINS methods which only use hand-crafted techniques, AB-VINS makes use of three different deep neural networks. Instead of estimating sparse feature positions, AB-VINS only estimates the scale and bias parameters (a and b) of monocular depth maps, as well as other terms to correct the depth using multi-view information, which results in a compressed feature state. Despite being an optimization-based system, the front-end motion tracking thread of AB-VINS surpasses the efficiency of a state-of-the-art filtering-based method while also providing dense depth. When performing loop closures, standard keyframe-based SLAM systems need to relinearize a number of variables which is linear with respect to the number of keyframes. In contrast, the proposed AB-VINS can incorporate loop closures while only affecting a constant number of variables. This is thanks to a novel data structure called the memory tree, where keyframe poses are defined relative to each other rather than all in one global frame, allowing for all but a few states to be fixed. While AB-VINS might not be as accurate as state-of-the-art VINS algorithms, it is shown to be more robust.

Submitted to T-RO
Enhancing Visual Inertial SLAM with Magnetic Measurements 2024-09-16
Show

This paper presents an extension to visual inertial odometry (VIO) by introducing tightly-coupled fusion of magnetometer measurements. A sliding window of keyframes is optimized by minimizing re-projection errors, relative inertial errors, and relative magnetometer orientation errors. The results of IMU orientation propagation are used to efficiently transform magnetometer measurements between frames producing relative orientation constraints between consecutive frames. The soft and hard iron effects are calibrated using an ellipsoid fitting algorithm. The introduction of magnetometer data results in significant reductions in the orientation error and also in recovery of the true yaw orientation with respect to the magnetic north. The proposed framework operates in all environments with slow-varying magnetic fields, mainly outdoors and underwater. We have focused our work on the underwater domain, especially in underwater caves, as the narrow passage and turbulent flow make it difficult to perform loop closures and reset the localization drift. The underwater caves present challenges to VIO due to the absence of ambient light and the confined nature of the environment, while also being a crucial source of fresh water and providing valuable historical records. Experimental results from underwater caves demonstrate the improvements in accuracy and robustness introduced by the proposed VIO extension.

Advancements in Translation Accuracy for Stereo Visual-Inertial Initialization 2024-08-18
Show

As the current initialization method in the state-of-the-art Stereo Visual-Inertial SLAM framework, ORB-SLAM3 has limitations. Its success depends on the performance of the pure stereo SLAM system and is based on the underlying assumption that pure visual SLAM can accurately estimate the camera trajectory, which is essential for inertial parameter estimation. Meanwhile, the further improved initialization method for ORB-SLAM3, known as Stereo-NEC, is time-consuming due to applying keypoint tracking to estimate gyroscope bias with normal epipolar constraints. To address the limitations of previous methods, this paper proposes a method aimed at enhancing translation accuracy during the initialization stage. The fundamental concept of our method is to improve the translation estimate with a 3 Degree-of-Freedom (DoF) Bundle Adjustment (BA), independently, while the rotation estimate is fixed, instead of using ORB-SLAM3's 6-DoF BA. Additionally, the rotation estimate will be updated by considering IMU measurements and gyroscope bias, unlike ORB-SLAM3's rotation, which is directly obtained from stereo visual odometry and may yield inferior results when operating in challenging scenarios. We also conduct extensive evaluations on the public benchmark, the EuRoC dataset, demonstrating that our method excels in accuracy.

MAVIS: Multi-Camera Augmented Visual-Inertial SLAM using SE2(3) Based Exact IMU Pre-integration 2024-07-16
Show

We present a novel optimization-based Visual-Inertial SLAM system designed for multiple partially overlapped camera systems, named MAVIS. Our framework fully exploits the benefits of wide field-of-view from multi-camera systems, and the metric scale measurements provided by an inertial measurement unit (IMU). We introduce an improved IMU pre-integration formulation based on the exponential function of an automorphism of SE_2(3), which can effectively enhance tracking performance under fast rotational motion and extended integration time. Furthermore, we extend conventional front-end tracking and back-end optimization module designed for monocular or stereo setup towards multi-camera systems, and introduce implementation details that contribute to the performance of our system in challenging scenarios. The practical validity of our approach is supported by our experiments on public datasets. Our MAVIS won the first place in all the vision-IMU tracks (single and multi-session SLAM) on Hilti SLAM Challenge 2023 with 1.7 times the score compared to the second place.

OpenM...

OpenMAVIS available at: https://github.com/MAVIS-SLAM/ORB_SLAM3_MULTI

IDLS: Inverse Depth Line based Visual-Inertial SLAM 2024-06-30
Show

For robust visual-inertial SLAM in perceptually-challenging indoor environments,recent studies exploit line features to extract descriptive information about scene structure to deal with the degeneracy of point features. But existing point-line-based SLAM methods mainly use Pl"ucker matrix or orthogonal representation to represent a line, which needs to calculate at least four variables to determine a line. Given the numerous line features to determine in each frame, the overly flexible line representation increases the computation burden and comprises the accuracy of the results. In this paper, we propose inverse depth representation for a line, which models each extracted line feature using only two variables, i.e., the inverse depths of the two ending points. It exploits the fact that the projected line's pixel coordinates on the image plane are rather accurate, which partially restrict the line. Using this compact line presentation, Inverse Depth Line SLAM (IDLS) is proposed to track the line features in SLAM in an accurate and efficient way. A robust line triangulation method and a novel line re-projection error model are introduced. And a two-step optimization method is proposed to firstly determine the lines and then to estimate the camera poses in each frame. IDLS is extensively evaluated in multiple perceptually-challenging datasets. The results show it is more accurate, robust, and needs lower computational overhead than the current state-of-the-art of point-line-based SLAM methods.

$D^2$SLAM: Decentralized and Distributed Collaborative Visual-inertial SLAM System for Aerial Swarm 2024-06-23
Show

Collaborative simultaneous localization and mapping (CSLAM) is essential for autonomous aerial swarms, laying the foundation for downstream algorithms such as planning and control. To address existing CSLAM systems' limitations in relative localization accuracy, crucial for close-range UAV collaboration, this paper introduces $D^2$SLAM-a novel decentralized and distributed CSLAM system. $D^2$SLAM innovatively manages near-field estimation for precise relative state estimation in proximity and far-field estimation for consistent global trajectories. Its adaptable front-end supports both stereo and omnidirectional cameras, catering to various operational needs and overcoming field-of-view challenges in aerial swarms. Experiments demonstrate $D^2$SLAM's effectiveness in accurate ego-motion estimation, relative localization, and global consistency. Enhanced by distributed optimization algorithms, $D^2$SLAM exhibits remarkable scalability and resilience to network delays, making it well-suited for a wide range of real-world aerial swarm applications. The adaptability and proven performance of $D^2$SLAM represent a significant advancement in autonomous aerial swarm technology.

Submi...

Submitted to IEEE Transaction on Robotics

DVI-SLAM: A Dual Visual Inertial SLAM Network 2024-05-26
Show

Recent deep learning based visual simultaneous localization and mapping (SLAM) methods have made significant progress. However, how to make full use of visual information as well as better integrate with inertial measurement unit (IMU) in visual SLAM has potential research value. This paper proposes a novel deep SLAM network with dual visual factors. The basic idea is to integrate both photometric factor and re-projection factor into the end-to-end differentiable structure through multi-factor data association module. We show that the proposed network dynamically learns and adjusts the confidence maps of both visual factors and it can be further extended to include the IMU factors as well. Extensive experiments validate that our proposed method significantly outperforms the state-of-the-art methods on several public datasets, including TartanAir, EuRoC and ETH3D-SLAM. Specifically, when dynamically fusing the three factors together, the absolute trajectory error for both monocular and stereo configurations on EuRoC dataset has reduced by 45.3% and 36.2% respectively.

Accepted to ICRA2024
A Probabilistic-based Drift Correction Module for Visual Inertial SLAMs 2024-04-15
Show

Positioning is a prominent field of study, notably focusing on Visual Inertial Odometry (VIO) and Simultaneous Localization and Mapping (SLAM) methods. Despite their advancements, these methods often encounter dead-reckoning errors that leads to considerable drift in estimated platform motion especially during long traverses. In such cases, the drift error is not negligible and should be rectified. Our proposed approach minimizes the drift error by correcting the estimated motion generated by any SLAM method at each epoch. Our methodology treats positioning measurements rendered by the SLAM solution as random variables formulated jointly in a multivariate distribution. In this setting, The correction of the drift becomes equivalent to finding the mode of this multivariate distribution which jointly maximizes the likelihood of a set of relevant geo-spatial priors about the platform motion and environment. Our method is integrable into any SLAM/VIO method as an correction module. Our experimental results shows the effectiveness of our approach in minimizing the drift error by 10x in long treverses.

Scalable Autonomous Drone Flight in the Forest with Visual-Inertial SLAM and Dense Submaps Built without LiDAR 2024-03-14
Show

Forestry constitutes a key element for a sustainable future, while it is supremely challenging to introduce digital processes to improve efficiency. The main limitation is the difficulty of obtaining accurate maps at high temporal and spatial resolution as a basis for informed forestry decision-making, due to the vast area forests extend over and the sheer number of trees. To address this challenge, we present an autonomous Micro Aerial Vehicle (MAV) system which purely relies on cost-effective and light-weight passive visual and inertial sensors to perform under-canopy autonomous navigation. We leverage visual-inertial simultaneous localization and mapping (VI-SLAM) for accurate MAV state estimates and couple it with a volumetric occupancy submapping system to achieve a scalable mapping framework which can be directly used for path planning. As opposed to a monolithic map, submaps inherently deal with inevitable drift and corrections from VI-SLAM, since they move with pose estimates as they are updated. To ensure the safety of the MAV during navigation, we also propose a novel reference trajectory anchoring scheme that moves and deforms the reference trajectory the MAV is tracking upon state updates from the VI-SLAM system in a consistent way, even upon large changes in state estimates due to loop-closures. We thoroughly validate our system in both real and simulated forest environments with high tree densities in excess of 400 trees per hectare and at speeds up to 3 m/s - while not encountering a single collision or system failure. To the best of our knowledge this is the first system which achieves this level of performance in such unstructured environment using low-cost passive visual sensors and fully on-board computation including VI-SLAM.

8 pages, 7 figures
Stereo-NEC: Enhancing Stereo Visual-Inertial SLAM Initialization with Normal Epipolar Constraints 2024-03-12
Show

We propose an accurate and robust initialization approach for stereo visual-inertial SLAM systems. Unlike the current state-of-the-art method, which heavily relies on the accuracy of a pure visual SLAM system to estimate inertial variables without updating camera poses, potentially compromising accuracy and robustness, our approach offers a different solution. We realize the crucial impact of precise gyroscope bias estimation on rotation accuracy. This, in turn, affects trajectory accuracy due to the accumulation of translation errors. To address this, we first independently estimate the gyroscope bias and use it to formulate a maximum a posteriori problem for further refinement. After this refinement, we proceed to update the rotation estimation by performing IMU integration with gyroscope bias removed from gyroscope measurements. We then leverage robust and accurate rotation estimates to enhance translation estimation via 3-DoF bundle adjustment. Moreover, we introduce a novel approach for determining the success of the initialization by evaluating the residual of the normal epipolar constraint. Extensive evaluations on the EuRoC dataset illustrate that our method excels in accuracy and robustness. It outperforms ORB-SLAM3, the current leading stereo visual-inertial initialization method, in terms of absolute trajectory error and relative rotation error, while maintaining competitive computational speed. Notably, even with 5 keyframes for initialization, our method consistently surpasses the state-of-the-art approach using 10 keyframes in rotation accuracy.

Control-Barrier-Aided Teleoperation with Visual-Inertial SLAM for Safe MAV Navigation in Complex Environments 2024-03-07
Show

In this paper, we consider a Micro Aerial Vehicle (MAV) system teleoperated by a non-expert and introduce a perceptive safety filter that leverages Control Barrier Functions (CBFs) in conjunction with Visual-Inertial Simultaneous Localization and Mapping (VI-SLAM) and dense 3D occupancy mapping to guarantee safe navigation in complex and unstructured environments. Our system relies solely on onboard IMU measurements, stereo infrared images, and depth images and autonomously corrects teleoperated inputs when they are deemed unsafe. We define a point in 3D space as unsafe if it satisfies either of two conditions: (i) it is occupied by an obstacle, or (ii) it remains unmapped. At each time step, an occupancy map of the environment is updated by the VI-SLAM by fusing the onboard measurements, and a CBF is constructed to parameterize the (un)safe region in the 3D space. Given the CBF and state feedback from the VI-SLAM module, a safety filter computes a certified reference that best matches the teleoperation input while satisfying the safety constraint encoded by the CBF. In contrast to existing perception-based safe control frameworks, we directly close the perception-action loop and demonstrate the full capability of safe control in combination with real-time VI-SLAM without any external infrastructure or prior knowledge of the environment. We verify the efficacy of the perceptive safety filter in real-time MAV experiments using exclusively onboard sensing and computation and show that the teleoperated MAV is able to safely navigate through unknown environments despite arbitrary inputs sent by the teleoperator.

Accep...

Accepted to the IEEE International Conference on Robotics and Automation (ICRA) 2024, 7 pages, 7 figures, supplementary video is available at https://youtu.be/rCxbWY4PIfQ?si=DC-9mg7g1WooNdaV

Tightly-Coupled LiDAR-Visual-Inertial SLAM and Large-Scale Volumetric Occupancy Mapping 2024-03-04
Show

Autonomous navigation is one of the key requirements for every potential application of mobile robots in the real-world. Besides high-accuracy state estimation, a suitable and globally consistent representation of the 3D environment is indispensable. We present a fully tightly-coupled LiDAR-Visual-Inertial SLAM system and 3D mapping framework applying local submapping strategies to achieve scalability to large-scale environments. A novel and correspondence-free, inherently probabilistic, formulation of LiDAR residuals is introduced, expressed only in terms of the occupancy fields and its respective gradients. These residuals can be added to a factor graph optimisation problem, either as frame-to-map factors for the live estimates or as map-to-map factors aligning the submaps with respect to one another. Experimental validation demonstrates that the approach achieves state-of-the-art pose accuracy and furthermore produces globally consistent volumetric occupancy submaps which can be directly used in downstream tasks such as navigation or exploration.

IEEE ...

IEEE International Conference on Robotics and Automation (ICRA) 2024

Kimera2: Robust and Accurate Metric-Semantic SLAM in the Real World 2024-01-12
Show

We present improvements to Kimera, an open-source metric-semantic visual-inertial SLAM library. In particular, we enhance Kimera-VIO, the visual-inertial odometry pipeline powering Kimera, to support better feature tracking, more efficient keyframe selection, and various input modalities (eg monocular, stereo, and RGB-D images, as well as wheel odometry). Additionally, Kimera-RPGO and Kimera-PGMO, Kimera's pose-graph optimization backends, are updated to support modern outlier rejection methods - specifically, Graduated-Non-Convexity - for improved robustness to spurious loop closures. These new features are evaluated extensively on a variety of simulated and real robotic platforms, including drones, quadrupeds, wheeled robots, and simulated self-driving cars. We present comparisons against several state-of-the-art visual-inertial SLAM pipelines and discuss strengths and weaknesses of the new release of Kimera. The newly added features have been released open-source at https://github.com/MIT-SPARK/Kimera.

Prese...

Presented at ISER 2023

Multi-Camera Visual-Inertial Simultaneous Localization and Mapping for Autonomous Valet Parking 2024-01-12
Show

Localization and mapping are key capabilities for self-driving vehicles. In this paper, we build on Kimera and extend it to use multiple cameras as well as external (eg wheel) odometry sensors, to obtain accurate and robust odometry estimates in real-world problems. Additionally, we propose an effective scheme for closing loops that circumvents the drawbacks of common alternatives based on the Perspective-n-Point method and also works with a single monocular camera. Finally, we develop a method for dense 3D mapping of the free space that combines a segmentation network for free-space detection with a homography-based dense mapping technique. We test our system on photo-realistic simulations and on several real datasets collected on a car prototype developed by the Ford Motor Company, spanning both indoor and outdoor parking scenarios. Our multi-camera system is shown to outperform state-of-the art open-source visual-inertial-SLAM pipelines (Vins-Fusion, ORB-SLAM3), and exhibits an average trajectory error under 1% of the trajectory length across more than 8km of distance traveled (combined across all datasets). A video showcasing the system is available at: youtu.be/H8CpzDpXOI8.

PLE-SLAM: A Visual-Inertial SLAM Based on Point-Line Features and Efficient IMU Initialization 2024-01-05
Show

Visual-inertial SLAM is crucial in various fields, such as aerial vehicles, industrial robots, and autonomous driving. The fusion of camera and inertial measurement unit (IMU) makes up for the shortcomings of a signal sensor, which significantly improves the accuracy and robustness of localization in challenging environments. This article presents PLE-SLAM, an accurate and real-time visual-inertial SLAM algorithm based on point-line features and efficient IMU initialization. First, we use parallel computing methods to extract features and compute descriptors to ensure real-time performance. Adjacent short line segments are merged into long line segments, and isolated short line segments are directly deleted. Second, a rotation-translation-decoupled initialization method is extended to use both points and lines. Gyroscope bias is optimized by tightly coupling IMU measurements and image observations. Accelerometer bias and gravity direction are solved by an analytical method for efficiency. To improve the system's intelligence in handling complex environments, a scheme of leveraging semantic information and geometric constraints to eliminate dynamic features and A solution for loop detection and closed-loop frame pose estimation using CNN and GNN are integrated into the system. All networks are accelerated to ensure real-time performance. The experiment results on public datasets illustrate that PLE-SLAM is one of the state-of-the-art visual-inertial SLAM systems.

The Invisible Map: Visual-Inertial SLAM with Fiducial Markers for Smartphone-based Indoor Navigation 2023-10-16
Show

We present a system for creating building-scale, easily navigable 3D maps using mainstream smartphones. In our approach, we formulate the 3D-mapping problem as an instance of Graph SLAM and infer the position of both building landmarks (fiducial markers) and navigable paths through the environment (phone poses). Our results demonstrate the system's ability to create accurate 3D maps. Further, we highlight the importance of careful selection of mapping hyperparameters and provide a novel technique for tuning these hyperparameters to adapt our algorithm to new environments.

LF-VISLAM: A SLAM Framework for Large Field-of-View Cameras with Negative Imaging Plane on Mobile Agents 2023-10-12
Show

Simultaneous Localization And Mapping (SLAM) has become a crucial aspect in the fields of autonomous driving and robotics. One crucial component of visual SLAM is the Field-of-View (FoV) of the camera, as a larger FoV allows for a wider range of surrounding elements and features to be perceived. However, when the FoV of the camera reaches the negative half-plane, traditional methods for representing image feature points using [u,v,1]^T become ineffective. While the panoramic FoV is advantageous for loop closure, its benefits are not easily realized under large-attitude-angle differences where loop-closure frames cannot be easily matched by existing methods. As loop closure on wide-FoV panoramic data further comes with a large number of outliers, traditional outlier rejection methods are not directly applicable. To address these issues, we propose LF-VISLAM, a Visual Inertial SLAM framework for cameras with extremely Large FoV with loop closure. A three-dimensional vector with unit length is introduced to effectively represent feature points even on the negative half-plane. The attitude information of the SLAM system is leveraged to guide the feature point detection of the loop closure. Additionally, a new outlier rejection method based on the unit length representation is integrated into the loop closure module. We collect the PALVIO dataset using a Panoramic Annular Lens (PAL) system with an entire FoV of 360{\deg}x(40{\deg}~120{\deg}) and an Inertial Measurement Unit (IMU) for Visual Inertial Odometry (VIO) to address the lack of panoramic SLAM datasets. Experiments on the established PALVIO and public datasets show that the proposed LF-VISLAM outperforms state-of-the-art SLAM methods. Our code will be open-sourced at https://github.com/flysoaryun/LF-VISLAM.

Accep...

Accepted to IEEE Transactions on Automation Science and Engineering (T-ASE). Extended version of IROS2022 paper arXiv:2202.12613. Code and dataset will be open-sourced at https://github.com/flysoaryun/LF-SLAM

EDI: ESKF-based Disjoint Initialization for Visual-Inertial SLAM Systems 2023-08-04
Show

Visual-inertial initialization can be classified into joint and disjoint approaches. Joint approaches tackle both the visual and the inertial parameters together by aligning observations from feature-bearing points based on IMU integration then use a closed-form solution with visual and acceleration observations to find initial velocity and gravity. In contrast, disjoint approaches independently solve the Structure from Motion (SFM) problem and determine inertial parameters from up-to-scale camera poses obtained from pure monocular SLAM. However, previous disjoint methods have limitations, like assuming negligible acceleration bias impact or accurate rotation estimation by pure monocular SLAM. To address these issues, we propose EDI, a novel approach for fast, accurate, and robust visual-inertial initialization. Our method incorporates an Error-state Kalman Filter (ESKF) to estimate gyroscope bias and correct rotation estimates from monocular SLAM, overcoming dependence on pure monocular SLAM for rotation estimation. To estimate the scale factor without prior information, we offer a closed-form solution for initial velocity, scale, gravity, and acceleration bias estimation. To address gravity and acceleration bias coupling, we introduce weights in the linear least-squares equations, ensuring acceleration bias observability and handling outliers. Extensive evaluation on the EuRoC dataset shows that our method achieves an average scale error of 5.8% in less than 3 seconds, outperforming other state-of-the-art disjoint visual-inertial initialization approaches, even in challenging environments and with artificial noise corruption.

PEBO-SLAM: Observer design for visual inertial SLAM with convergence guarantees 2023-06-22
Show

This paper introduces a new linear parameterization to the problem of visual inertial simultaneous localization and mapping (VI-SLAM) -- without any approximation -- for the case only using information from a single monocular camera and an inertial measurement unit. In this problem set, the system state evolves on the nonlinear manifold $SE(3)\times \mathbb{R}^{3n}$, on which we design dynamic extensions carefully to generate invariant foliations, such that the problem can be reformulated into online \emph{constant parameter} identification, then interestingly with linear regression models obtained. It demonstrates that VI-SLAM can be translated into a linear least squares problem, in the deterministic sense, \emph{globally} and \emph{exactly}. Based on this observation, we propose a novel SLAM observer, following the recently established parameter estimation-based observer (PEBO) methodology. A notable merit is that the proposed observer enjoys almost global asymptotic stability, requiring neither persistency of excitation nor uniform complete observability, which, however, are widely adopted in most existing works with provable stability but can hardly be assured in many practical scenarios.

BAMF-SLAM: Bundle Adjusted Multi-Fisheye Visual-Inertial SLAM Using Recurrent Field Transforms 2023-06-14
Show

In this paper, we present BAMF-SLAM, a novel multi-fisheye visual-inertial SLAM system that utilizes Bundle Adjustment (BA) and recurrent field transforms (RFT) to achieve accurate and robust state estimation in challenging scenarios. First, our system directly operates on raw fisheye images, enabling us to fully exploit the wide Field-of-View (FoV) of fisheye cameras. Second, to overcome the low-texture challenge, we explore the tightly-coupled integration of multi-camera inputs and complementary inertial measurements via a unified factor graph and jointly optimize the poses and dense depth maps. Third, for global consistency, the wide FoV of the fisheye camera allows the system to find more potential loop closures, and powered by the broad convergence basin of RFT, our system can perform very wide baseline loop closing with little overlap. Furthermore, we introduce a semi-pose-graph BA method to avoid the expensive full global BA. By combining relative pose factors with loop closure factors, the global states can be adjusted efficiently with modest memory footprint while maintaining high accuracy. Evaluations on TUM-VI, Hilti-Oxford and Newer College datasets show the superior performance of the proposed system over prior works. In the Hilti SLAM Challenge 2022, our VIO version achieves second place. In a subsequent submission, our complete system, including the global BA backend, outperforms the winning approach.

Accepted to ICRA2023
Know What You Don't Know: Consistency in Sliding Window Filtering with Unobservable States Applied to Visual-Inertial SLAM (Extended Version) 2023-05-08
Show

Estimation algorithms, such as the sliding window filter, produce an estimate and uncertainty of desired states. This task becomes challenging when the problem involves unobservable states. In these situations, it is critical for the algorithm to ``know what it doesn't know'', meaning that it must maintain the unobservable states as unobservable during algorithm deployment. This letter presents general requirements for maintaining consistency in sliding window filters involving unobservable states. The value of these requirements for designing navigation solutions is experimentally shown within the context of visual-inertial SLAM making use of IMU preintegration.

Main ...

Main paper accepted to Robotics and Automation Letters. Main paper has 8 pages, 3 figures. Supplemental materials are 6 pages, 0 figures after the main paper

COVINS-G: A Generic Back-end for Collaborative Visual-Inertial SLAM 2023-05-05
Show

Collaborative SLAM is at the core of perception in multi-robot systems as it enables the co-localization of the team of robots in a common reference frame, which is of vital importance for any coordination amongst them. The paradigm of a centralized architecture is well established, with the robots (i.e. agents) running Visual-Inertial Odometry (VIO) onboard while communicating relevant data, such as e.g. Keyframes (KFs), to a central back-end (i.e. server), which then merges and optimizes the joint maps of the agents. While these frameworks have proven to be successful, their capability and performance are highly dependent on the choice of the VIO front-end, thus limiting their flexibility. In this work, we present COVINS-G, a generalized back-end building upon the COVINS framework, enabling the compatibility of the server-back-end with any arbitrary VIO front-end, including, for example, off-the-shelf cameras with odometry capabilities, such as the Realsense T265. The COVINS-G back-end deploys a multi-camera relative pose estimation algorithm for computing the loop-closure constraints allowing the system to work purely on 2D image data. In the experimental evaluation, we show on-par accuracy with state-of-the-art multi-session and collaborative SLAM systems, while demonstrating the flexibility and generality of our approach by employing different front-ends onboard collaborating agents within the same mission. The COVINS-G codebase along with a generalized front-end wrapper to allow any existing VIO front-end to be readily used in combination with the proposed collaborative back-end is open-sourced. Video: https://youtu.be/FoJfXCfaYDw

6+1 P...

6+1 Pages, 5 Figures, 3 Tables, Accepted at ICRA 2023, London

High Definition, Inexpensive, Underwater Mapping 2022-10-28
Show

In this paper we present a complete framework for Underwater SLAM utilizing a single inexpensive sensor. Over the recent years, imaging technology of action cameras is producing stunning results even under the challenging conditions of the underwater domain. The GoPro 9 camera provides high definition video in synchronization with an Inertial Measurement Unit (IMU) data stream encoded in a single mp4 file. The visual inertial SLAM framework is augmented to adjust the map after each loop closure. Data collected at an artificial wreck of the coast of South Carolina and in caverns and caves in Florida demonstrate the robustness of the proposed approach in a variety of conditions.

IEEE ...

IEEE Internation Conference on Robotics and Automation, 2022

UrbanFly: Uncertainty-Aware Planning for Navigation Amongst High-Rises with Monocular Visual-Inertial SLAM Maps 2022-10-03
Show

We present UrbanFly: an uncertainty-aware real-time planning framework for quadrotor navigation in urban high-rise environments. A core aspect of UrbanFly is its ability to robustly plan directly on the sparse point clouds generated by a Monocular Visual Inertial SLAM (VINS) backend. It achieves this by using the sparse point clouds to build an uncertainty-integrated cuboid representation of the environment through a data-driven monocular plane segmentation network. Our chosen world model provides faster distance queries than the more common voxel-grid representation, and UrbanFly leverages this capability in two different ways leading to two trajectory optimizers. The first optimizer uses a gradient-free cross-entropy method to compute trajectories that minimize collision probability and smoothness cost. Our second optimizer is a simplified version of the first and uses a sequential convex programming optimizer initialized based on probabilistic safety estimates on a set of randomly drawn trajectories. Both our trajectory optimizers are made computationally tractable and independent of the nature of underlying uncertainty by embedding the distribution of collision violations in Reproducing Kernel Hilbert Space. Empowered by the algorithmic innovation, UrbanFly outperforms competing baselines in metrics such as collision rate, trajectory length, etc., on a high-fidelity AirSim simulator augmented with synthetic and real-world dataset scenes.

Submi...

Submitted to ACC 2023, Code available at https://github.com/sudarshan-s-harithas/UrbanFly

DynaVINS: A Visual-Inertial SLAM for Dynamic Environments 2022-08-24
Show

Visual inertial odometry and SLAM algorithms are widely used in various fields, such as service robots, drones, and autonomous vehicles. Most of the SLAM algorithms are based on assumption that landmarks are static. However, in the real-world, various dynamic objects exist, and they degrade the pose estimation accuracy. In addition, temporarily static objects, which are static during observation but move when they are out of sight, trigger false positive loop closings. To overcome these problems, we propose a novel visual-inertial SLAM framework, called DynaVINS, which is robust against both dynamic objects and temporarily static objects. In our framework, we first present a robust bundle adjustment that could reject the features from dynamic objects by leveraging pose priors estimated by the IMU preintegration. Then, a keyframe grouping and a multi-hypothesis-based constraints grouping methods are proposed to reduce the effect of temporarily static objects in the loop closing. Subsequently, we evaluated our method in a public dataset that contains numerous dynamic objects. Finally, the experimental results corroborate that our DynaVINS has promising performance compared with other state-of-the-art methods by successfully rejecting the effect of dynamic and temporarily static objects. Our code is available at https://github.com/url-kaist/dynaVINS.

8 pag...

8 pages, accepted to IEEE RA-L (August 22, 2022)

Visual-Inertial SLAM with Tightly-Coupled Dropout-Tolerant GPS Fusion 2022-08-01
Show

Robotic applications are continuously striving towards higher levels of autonomy. To achieve that goal, a highly robust and accurate state estimation is indispensable. Combining visual and inertial sensor modalities has proven to yield accurate and locally consistent results in short-term applications. Unfortunately, visual-inertial state estimators suffer from the accumulation of drift for long-term trajectories. To eliminate this drift, global measurements can be fused into the state estimation pipeline. The most known and widely available source of global measurements is the Global Positioning System (GPS). In this paper, we propose a novel approach that fully combines stereo Visual-Inertial Simultaneous Localisation and Mapping (SLAM), including visual loop closures, with the fusion of global sensor modalities in a tightly-coupled and optimisation-based framework. Incorporating measurement uncertainties, we provide a robust criterion to solve the global reference frame initialisation problem. Furthermore, we propose a loop-closure-like optimisation scheme to compensate drift accumulated during outages in receiving GPS signals. Experimental validation on datasets and in a real-world experiment demonstrates the robustness of our approach to GPS dropouts as well as its capability to estimate highly accurate and globally consistent trajectories compared to existing state-of-the-art methods.

Inter...

International Conference on Intelligent Robots and Systems (IROS) 2022

Dense RGB-D-Inertial SLAM with Map Deformations 2022-07-22
Show

While dense visual SLAM methods are capable of estimating dense reconstructions of the environment, they suffer from a lack of robustness in their tracking step, especially when the optimisation is poorly initialised. Sparse visual SLAM systems have attained high levels of accuracy and robustness through the inclusion of inertial measurements in a tightly-coupled fusion. Inspired by this performance, we propose the first tightly-coupled dense RGB-D-inertial SLAM system. Our system has real-time capability while running on a GPU. It jointly optimises for the camera pose, velocity, IMU biases and gravity direction while building up a globally consistent, fully dense surfel-based 3D reconstruction of the environment. Through a series of experiments on both synthetic and real world datasets, we show that our dense visual-inertial SLAM system is more robust to fast motions and periods of low texture and low geometric variation than a related RGB-D-only SLAM system.

Accep...

Accepted at IROS 2017; supplementary video available at https://youtu.be/-gUdQ0cxDh0

A Look at Improving Robustness in Visual-inertial SLAM by Moment Matching 2022-05-27
Show

The fusion of camera sensor and inertial data is a leading method for ego-motion tracking in autonomous and smart devices. State estimation techniques that rely on non-linear filtering are a strong paradigm for solving the associated information fusion task. The de facto inference method in this space is the celebrated extended Kalman filter (EKF), which relies on first-order linearizations of both the dynamical and measurement model. This paper takes a critical look at the practical implications and limitations posed by the EKF, especially under faulty visual feature associations and the presence of strong confounding noise. As an alternative, we revisit the assumed density formulation of Bayesian filtering and employ a moment matching (unscented Kalman filtering) approach to both visual-inertial odometry and visual SLAM. Our results highlight important aspects in robustness both in dynamics propagation and visual measurement updates, and we show state-of-the-art results on EuRoC MAV drone data benchmark.

8 pag...

8 pages, to appear in Proceedings of FUSION 2022

CNN-Augmented Visual-Inertial SLAM with Planar Constraints 2022-05-05
Show

We present a robust visual-inertial SLAM system that combines the benefits of Convolutional Neural Networks (CNNs) and planar constraints. Our system leverages a CNN to predict the depth map and the corresponding uncertainty map for each image. The CNN depth effectively bootstraps the back-end optimization of SLAM and meanwhile the CNN uncertainty adaptively weighs the contribution of each feature point to the back-end optimization. Given the gravity direction from the inertial sensor, we further present a fast plane detection method that detects horizontal planes via one-point RANSAC and vertical planes via two-point RANSAC. Those stably detected planes are in turn used to regularize the back-end optimization of SLAM. We evaluate our system on a public dataset, \ie, EuRoC, and demonstrate improved results over a state-of-the-art SLAM system, \ie, ORB-SLAM3.

PL-VINS: Real-Time Monocular Visual-Inertial SLAM with Point and Line Features 2022-04-15
Show

Leveraging line features to improve localization accuracy of point-based visual-inertial SLAM (VINS) is gaining interest as they provide additional constraints on scene structure. However, real-time performance when incorporating line features in VINS has not been addressed. This paper presents PL-VINS, a real-time optimization-based monocular VINS method with point and line features, developed based on the state-of-the-art point-based VINS-Mono \cite{vins}. We observe that current works use the LSD \cite{lsd} algorithm to extract line features; however, LSD is designed for scene shape representation instead of the pose estimation problem, which becomes the bottleneck for the real-time performance due to its high computational cost. In this paper, a modified LSD algorithm is presented by studying a hidden parameter tuning and length rejection strategy. The modified LSD can run at least three times as fast as LSD. Further, by representing space lines with the Pl"{u}cker coordinates, the residual error in line estimation is modeled in terms of the point-to-line distance, which is then minimized by iteratively updating the minimum four-parameter orthonormal representation of the Pl"{u}cker coordinates. Experiments in a public benchmark dataset show that the localization error of our method is 12-16% less than that of VINS-Mono at the same pose update frequency. %For the benefit of the community, The source code of our method is available at: https://github.com/cnqiangfu/PL-VINS.

Visua...

Visual-Inertial SLAM, LSD, Lines, SLAM, VINS-Mono

Self-Supervised Depth Completion for Active Stereo 2022-01-20
Show

Active stereo systems are used in many robotic applications that require 3D information. These depth sensors, however, suffer from stereo artefacts and do not provide dense depth estimates.In this work, we present the first self-supervised depth completion method for active stereo systems that predicts accurate dense depth maps. Our system leverages a feature-based visual inertial SLAM system to produce motion estimates and accurate (but sparse) 3D landmarks. The 3D landmarks are used both as model input and as supervision during training. The motion estimates are used in our novel reconstruction loss that relies on a combination of passive and active stereo frames, resulting in significant improvements in textureless areas that are common in indoor environments. Due to the nonexistence of publicly available active stereo datasets, we release a real dataset together with additional information for a publicly available synthetic dataset (TartanAir [42]) needed for active depth completion and prediction. Through rigorous evaluations we show that our method outperforms state of the art on both datasets. Additionally we show how our method obtains more complete, and therefore safer, 3D maps when used in a robotic platform.

Accep...

Accepted to RAL-ICRA 21

Optimization-Based Visual-Inertial SLAM Tightly Coupled with Raw GNSS Measurements 2021-10-24
Show

Unlike loose coupling approaches and the EKF-based approaches in the literature, we propose an optimization-based visual-inertial SLAM tightly coupled with raw Global Navigation Satellite System (GNSS) measurements, a first attempt of this kind in the literature to our knowledge. More specifically, reprojection error, IMU pre-integration error and raw GNSS measurement error are jointly minimized within a sliding window, in which the asynchronism between images and raw GNSS measurements is accounted for. In addition, issues such as marginalization, noisy measurements removal, as well as tackling vulnerable situations are also addressed. Experimental results on public dataset in complex urban scenes show that our proposed approach outperforms state-of-the-art visual-inertial SLAM, GNSS single point positioning, as well as a loose coupling approach, including scenes mainly containing low-rise buildings and those containing urban canyons.

7 pag...

7 pages, 6 figures. Accepted by ICRA 2021

Kimera: from SLAM to Spatial Perception with 3D Dynamic Scene Graphs 2021-10-20
Show

Humans are able to form a complex mental model of the environment they move in. This mental model captures geometric and semantic aspects of the scene, describes the environment at multiple levels of abstractions (e.g., objects, rooms, buildings), includes static and dynamic entities and their relations (e.g., a person is in a room at a given time). In contrast, current robots' internal representations still provide a partial and fragmented understanding of the environment, either in the form of a sparse or dense set of geometric primitives (e.g., points, lines, planes, voxels) or as a collection of objects. This paper attempts to reduce the gap between robot and human perception by introducing a novel representation, a 3D Dynamic Scene Graph(DSG), that seamlessly captures metric and semantic aspects of a dynamic environment. A DSG is a layered graph where nodes represent spatial concepts at different levels of abstraction, and edges represent spatio-temporal relations among nodes. Our second contribution is Kimera, the first fully automatic method to build a DSG from visual-inertial data. Kimera includes state-of-the-art techniques for visual-inertial SLAM, metric-semantic 3D reconstruction, object localization, human pose and shape estimation, and scene parsing. Our third contribution is a comprehensive evaluation of Kimera in real-life datasets and photo-realistic simulations, including a newly released dataset, uHumans2, which simulates a collection of crowded indoor and outdoor scenes. Our evaluation shows that Kimera achieves state-of-the-art performance in visual-inertial SLAM, estimates an accurate 3D metric-semantic mesh model in real-time, and builds a DSG of a complex indoor environment with tens of objects and humans in minutes. Our final contribution shows how to use a DSG for real-time hierarchical semantic path-planning. The core modules in Kimera are open-source.

34 pa...

34 pages, 25 figures, 9 tables. arXiv admin note: text overlap with arXiv:2002.06289

Schmidt or Compressed filtering for Visual-Inertial SLAM? 2021-09-29
Show

Visual-inertial SLAM has been studied widely due to the advantage of its lightweight, cost-effectiveness, and rich information compared to other sensors. A multi-state constrained filter (MSCKF) and its Schmidt version have been developed to address the computational cost, which treats keyframes as static nuisance parameters, leading to sub-optimal performance. We propose a new Compressed-MSCKF which can achieve improved accuracy with moderate computational costs. By keeping the information gain with compressed form, it can limit to $\mathcal{O}(L)$ with $L$ being the number of local keyframes. The performance of the proposed system has been evaluated using a MATLAB simulator.

COVINS: Visual-Inertial SLAM for Centralized Collaboration 2021-08-12
Show

Collaborative SLAM enables a group of agents to simultaneously co-localize and jointly map an environment, thus paving the way to wide-ranging applications of multi-robot perception and multi-user AR experiences by eliminating the need for external infrastructure or pre-built maps. This article presents COVINS, a novel collaborative SLAM system, that enables multi-agent, scalable SLAM in large environments and for large teams of more than 10 agents. The paradigm here is that each agent runs visual-inertial odomety independently onboard in order to ensure its autonomy, while sharing map information with the COVINS server back-end running on a powerful local PC or a remote cloud server. The server back-end establishes an accurate collaborative global estimate from the contributed data, refining the joint estimate by means of place recognition, global optimization and removal of redundant data, in order to ensure an accurate, but also efficient SLAM process. A thorough evaluation of COVINS reveals increased accuracy of the collaborative SLAM estimates, as well as efficiency in both removing redundant information and reducing the coordination overhead, and demonstrates successful operation in a large-scale mission with 12 agents jointly performing SLAM.

Collaborative Visual Inertial SLAM for Multiple Smart Phones 2021-06-23
Show

The efficiency and accuracy of mapping are crucial in a large scene and long-term AR applications. Multi-agent cooperative SLAM is the precondition of multi-user AR interaction. The cooperation of multiple smart phones has the potential to improve efficiency and robustness of task completion and can complete tasks that a single agent cannot do. However, it depends on robust communication, efficient location detection, robust mapping, and efficient information sharing among agents. We propose a multi-intelligence collaborative monocular visual-inertial SLAM deployed on multiple ios mobile devices with a centralized architecture. Each agent can independently explore the environment, run a visual-inertial odometry module online, and then send all the measurement information to a central server with higher computing resources. The server manages all the information received, detects overlapping areas, merges and optimizes the map, and shares information with the agents when needed. We have verified the performance of the system in public datasets and real environments. The accuracy of mapping and fusion of the proposed system is comparable to VINS-Mono which requires higher computing resources.

6 pag...

6 pages,4 figures,ICRA2021

ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM 2021-04-23
Show

This paper presents ORB-SLAM3, the first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models. The first main novelty is a feature-based tightly-integrated visual-inertial SLAM system that fully relies on Maximum-a-Posteriori (MAP) estimation, even during the IMU initialization phase. The result is a system that operates robustly in real-time, in small and large, indoor and outdoor environments, and is 2 to 5 times more accurate than previous approaches. The second main novelty is a multiple map system that relies on a new place recognition method with improved recall. Thanks to it, ORB-SLAM3 is able to survive to long periods of poor visual information: when it gets lost, it starts a new map that will be seamlessly merged with previous maps when revisiting mapped areas. Compared with visual odometry systems that only use information from the last few seconds, ORB-SLAM3 is the first system able to reuse in all the algorithm stages all previous information. This allows to include in bundle adjustment co-visible keyframes, that provide high parallax observations boosting accuracy, even if they are widely separated in time or if they come from a previous mapping session. Our experiments show that, in all sensor configurations, ORB-SLAM3 is as robust as the best systems available in the literature, and significantly more accurate. Notably, our stereo-inertial SLAM achieves an average accuracy of 3.6 cm on the EuRoC drone and 9 mm under quick hand-held motions in the room of TUM-VI dataset, a setting representative of AR/VR scenarios. For the benefit of the community we make public the source code.

Consistent Right-Invariant Fixed-Lag Smoother with Application to Visual Inertial SLAM 2021-03-21
Show

State estimation problems without absolute position measurements routinely arise in navigation of unmanned aerial vehicles, autonomous ground vehicles, etc., whose proper operation relies on accurate state estimates and reliable covariances. Unaware of absolute positions, these problems have immanent unobservable directions. Traditional causal estimators, however, usually gain spurious information on the unobservable directions, leading to over-confident covariance inconsistent with actual estimator errors. The consistency problem of fixed-lag smoothers (FLSs) has only been attacked by the first estimate Jacobian (FEJ) technique because of the complexity to analyze their observability property. But the FEJ has several drawbacks hampering its wide adoption. To ensure the consistency of a FLS, this paper introduces the right invariant error formulation into the FLS framework. To our knowledge, we are the first to analyze the observability of a FLS with the right invariant error. Our main contributions are twofold. As the first novelty, to bypass the complexity of analysis with the classic observability matrix, we show that observability analysis of FLSs can be done equivalently on the linearized system. Second, we prove that the inconsistency issue in the traditional FLS can be elegantly solved by the right invariant error formulation without artificially correcting Jacobians. By applying the proposed FLS to the monocular visual inertial simultaneous localization and mapping (SLAM) problem, we confirm that the method consistently estimates covariance similarly to a batch smoother in simulation and that our method achieved comparable accuracy as traditional FLSs on real data.

13 pa...

13 pages, 4 figures, AAAI 2021 Conference

Accurate Visual-Inertial SLAM by Feature Re-identification 2021-02-26
Show

We propose a novel feature re-identification method for real-time visual-inertial SLAM. The front-end module of the state-of-the-art visual-inertial SLAM methods (e.g. visual feature extraction and matching schemes) relies on feature tracks across image frames, which are easily broken in challenging scenarios, resulting in insufficient visual measurement and accumulated error in pose estimation. In this paper, we propose an efficient drift-less SLAM method by re-identifying existing features from a spatial-temporal sensitive sub-global map. The re-identified features over a long time span serve as augmented visual measurements and are incorporated into the optimization module which can gradually decrease the accumulative error in the long run, and further build a drift-less global map in the system. Extensive experiments show that our feature re-identification method is both effective and efficient. Specifically, when combining the feature re-identification with the state-of-the-art SLAM method [11], our method achieves 67.3% and 87.5% absolute translation error reduction with only a small additional computational cost on two public SLAM benchmark DBs: EuRoC and TUM-VI respectively.

7 pag...

7 pages, 4 figures, Submitted to ICRA2021

Bidirectional Trajectory Computation for Odometer-Aided Visual-Inertial SLAM 2021-02-20
Show

Odometer-aided visual-inertial SLAM systems typically have a good performance for navigation of wheeled platforms, while they usually suffer from degenerate cases before the first turning. In this paper, firstly we perform an observability analysis w.r.t. the extrinsic parameters before the first turning, which is a complement of the existing results of observability analyses. Secondly, inspired by the above observability analyses, we propose a bidirectional trajectory computation method, by which the poses before the first turning are refined in the backward computation thread, and the real-time trajectory is adjusted accordingly. Experimental results prove that our proposed method not only solves the problem of the unobservability of accelerometer bias and extrinsic parameters before the first turning, but also results in more accurate trajectories in comparison with the state-of-the-art approaches.

Accep...

Accepted by IEEE Robotics and Automation Letters

RISE-SLAM: A Resource-aware Inverse Schmidt Estimator for SLAM 2020-11-23
Show

In this paper, we present the RISE-SLAM algorithm for performing visual-inertial simultaneous localization and mapping (SLAM), while improving estimation consistency. Specifically, in order to achieve real-time operation, existing approaches often assume previously-estimated states to be perfectly known, which leads to inconsistent estimates. Instead, based on the idea of the Schmidt-Kalman filter, which has processing cost linear in the size of the state vector but quadratic memory requirements, we derive a new consistent approximate method in the information domain, which has linear memory requirements and adjustable (constant to linear) processing cost. In particular, this method, the resource-aware inverse Schmidt estimator (RISE), allows trading estimation accuracy for computational efficiency. Furthermore, and in order to better address the requirements of a SLAM system during an exploration vs. a relocalization phase, we employ different configurations of RISE (in terms of the number and order of states updated) to maximize accuracy while preserving efficiency. Lastly, we evaluate the proposed RISE-SLAM algorithm on publicly-available datasets and demonstrate its superiority, both in terms of accuracy and efficiency, as compared to alternative visual-inertial SLAM systems.

IROS 2019
Deep Depth Estimation from Visual-Inertial SLAM 2020-08-14
Show

This paper addresses the problem of learning to complete a scene's depth from sparse depth points and images of indoor scenes. Specifically, we study the case in which the sparse depth is computed from a visual-inertial simultaneous localization and mapping (VI-SLAM) system. The resulting point cloud has low density, it is noisy, and has non-uniform spatial distribution, as compared to the input from active depth sensors, e.g., LiDAR or Kinect. Since the VI-SLAM produces point clouds only over textured areas, we compensate for the missing depth of the low-texture surfaces by leveraging their planar structures and their surface normals which is an important intermediate representation. The pre-trained surface normal network, however, suffers from large performance degradation when there is a significant difference in the viewing direction (especially the roll angle) of the test image as compared to the trained ones. To address this limitation, we use the available gravity estimate from the VI-SLAM to warp the input image to the orientation prevailing in the training dataset. This results in a significant performance gain for the surface normal estimate, and thus the dense depth estimates. Finally, we show that our method outperforms other state-of-the-art approaches both on training (ScanNet and NYUv2) and testing (collected with Azure Kinect) datasets.

9 pages
3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans 2020-06-16
Show

We present a unified representation for actionable spatial perception: 3D Dynamic Scene Graphs. Scene graphs are directed graphs where nodes represent entities in the scene (e.g. objects, walls, rooms), and edges represent relations (e.g. inclusion, adjacency) among nodes. Dynamic scene graphs (DSGs) extend this notion to represent dynamic scenes with moving agents (e.g. humans, robots), and to include actionable information that supports planning and decision-making (e.g. spatio-temporal relations, topology at different levels of abstraction). Our second contribution is to provide the first fully automatic Spatial PerceptIon eNgine(SPIN) to build a DSG from visual-inertial data. We integrate state-of-the-art techniques for object and human detection and pose estimation, and we describe how to robustly infer object, robot, and human nodes in crowded scenes. To the best of our knowledge, this is the first paper that reconciles visual-inertial SLAM and dense human mesh tracking. Moreover, we provide algorithms to obtain hierarchical representations of indoor environments (e.g. places, structures, rooms) and their relations. Our third contribution is to demonstrate the proposed spatial perception engine in a photo-realistic Unity-based simulator, where we assess its robustness and expressiveness. Finally, we discuss the implications of our proposal on modern robotics applications. 3D Dynamic Scene Graphs can have a profound impact on planning and decision-making, human-robot interaction, long-term autonomy, and scene prediction. A video abstract is available at https://youtu.be/SWbofjhyPzI

11 pages, 5 figures
Monocular visual-inertial SLAM algorithm combined with wheel speed anomaly detection 2020-03-22
Show

To address the weak observability of monocular visual-inertial odometers on ground-based mobile robots, this paper proposes a monocular inertial SLAM algorithm combined with wheel speed anomaly detection. The algorithm uses a wheel speed odometer pre-integration method to add the wheel speed measurement to the least-squares problem in a tightly coupled manner. For abnormal motion situations, such as skidding and abduction, this paper adopts the Mecanum mobile chassis control method, based on torque control. This method uses the motion constraint error to estimate the reliability of the wheel speed measurement. At the same time, in order to prevent incorrect chassis speed measurements from negatively influencing robot pose estimation, this paper uses three methods to detect abnormal chassis movement and analyze chassis movement status in real time. When the chassis movement is determined to be abnormal, the wheel odometer pre-integration measurement of the current frame is removed from the state estimation equation, thereby ensuring the accuracy and robustness of the state estimation. Experimental results show that the accuracy and robustness of the method in this paper are better than those of a monocular visual-inertial odometer.

Closed-Loop Benchmarking of Stereo Visual-Inertial SLAM Systems: Understanding the Impact of Drift and Latency on Tracking Accuracy 2020-03-07
Show

Visual-inertial SLAM is essential for robot navigation in GPS-denied environments, e.g. indoor, underground. Conventionally, the performance of visual-inertial SLAM is evaluated with open-loop analysis, with a focus on the drift level of SLAM systems. In this paper, we raise the question on the importance of visual estimation latency in closed-loop navigation tasks, such as accurate trajectory tracking. To understand the impact of both drift and latency on visual-inertial SLAM systems, a closed-loop benchmarking simulation is conducted, where a robot is commanded to follow a desired trajectory using the feedback from visual-inertial estimation. By extensively evaluating the trajectory tracking performance of representative state-of-the-art visual-inertial SLAM systems, we reveal the importance of latency reduction in visual estimation module of these systems. The findings suggest directions of future improvements for visual-inertial SLAM.

8 pag...

8 pages, 7 figures. Accepted for publication in ICRA 2020

Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping 2020-03-04
Show

We provide an open-source C++ library for real-time metric-semantic visual-inertial Simultaneous Localization And Mapping (SLAM). The library goes beyond existing visual and visual-inertial SLAM libraries (e.g., ORB-SLAM, VINS- Mono, OKVIS, ROVIO) by enabling mesh reconstruction and semantic labeling in 3D. Kimera is designed with modularity in mind and has four key components: a visual-inertial odometry (VIO) module for fast and accurate state estimation, a robust pose graph optimizer for global trajectory estimation, a lightweight 3D mesher module for fast mesh reconstruction, and a dense 3D metric-semantic reconstruction module. The modules can be run in isolation or in combination, hence Kimera can easily fall back to a state-of-the-art VIO or a full SLAM system. Kimera runs in real-time on a CPU and produces a 3D metric-semantic mesh from semantically labeled images, which can be obtained by modern deep learning methods. We hope that the flexibility, computational efficiency, robustness, and accuracy afforded by Kimera will build a solid basis for future metric-semantic SLAM and perception research, and will allow researchers across multiple areas (e.g., VIO, SLAM, 3D reconstruction, segmentation) to benchmark and prototype their own efforts without having to start from scratch.

8 pages
VersaVIS: An Open Versatile Multi-Camera Visual-Inertial Sensor Suite 2019-12-05
Show

Robust and accurate pose estimation is crucial for many applications in mobile robotics. Extending visual Simultaneous Localization and Mapping (SLAM) with other modalities such as an inertial measurement unit (IMU) can boost robustness and accuracy. However, for a tight sensor fusion, accurate time synchronization of the sensors is often crucial. Changing exposure times, internal sensor filtering, multiple clock sources and unpredictable delays from operation system scheduling and data transfer can make sensor synchronization challenging. In this paper, we present VersaVIS, an Open Versatile Multi-Camera Visual-Inertial Sensor Suite aimed to be an efficient research platform for easy deployment, integration and extension for many mobile robotic applications. VersaVIS provides a complete, open-source hardware, firmware and software bundle to perform time synchronization of multiple cameras with an IMU featuring exposure compensation, host clock translation and independent and stereo camera triggering. The sensor suite supports a wide range of cameras and IMUs to match the requirements of the application. The synchronization accuracy of the framework is evaluated on multiple experiments achieving timing accuracy of less than 1 ms. Furthermore, the applicability and versatility of the sensor suite is demonstrated in multiple applications including visual-inertial SLAM, multi-camera applications, multimodal mapping, reconstruction and object based mapping.

Fast and Robust Initialization for Visual-Inertial SLAM 2019-08-28
Show

Visual-inertial SLAM (VI-SLAM) requires a good initial estimation of the initial velocity, orientation with respect to gravity and gyroscope and accelerometer biases. In this paper we build on the initialization method proposed by Martinelli and extended by Kaiser et al. , modifying it to be more general and efficient. We improve accuracy with several rounds of visual-inertial bundle adjustment, and robustify the method with novel observability and consensus tests, that discard erroneous solutions. Our results on the EuRoC dataset show that, while the original method produces scale errors up to 156%, our method is able to consistently initialize in less than two seconds with scale errors around 5%, which can be further reduced to less than 1% performing visual-inertial bundle adjustment after ten seconds.

2019 ...

2019 International Conference on Robotics and Automation

Learning Whole-Image Descriptors for Real-time Loop Detection andKidnap Recovery under Large Viewpoint Difference 2019-04-15
Show

We present a real-time stereo visual-inertial-SLAM system which is able to recover from complicatedkidnap scenarios and failures online in realtime. We propose to learn the whole-image-descriptorin a weakly supervised manner based on NetVLAD and decoupled convolutions. We analyse thetraining difficulties in using standard loss formulations and propose an allpairloss and show itseffect through extensive experiments. Compared to standard NetVLAD, our network takes an orderof magnitude fewer computations and model parameters, as a result runs about three times faster.We evaluate the representation power of our descriptor on standard datasets with precision-recall.Unlike previous loop detection methods which have been evaluated only on fronto-parallel revisits,we evaluate the performace of our method with competing methods on scenarios involving largeviewpoint difference. Finally, we present the fully functional system with relative computation andhandling of multiple world co-ordinate system which is able to reduce odometry drift, recover fromcomplicated kidnap scenarios and random odometry failures. We open source our fully functional system as an add-on for the popular VINS-Fusion.

An Efficient Schmidt-EKF for 3D Visual-Inertial SLAM 2019-03-20
Show

It holds great implications for practical applications to enable centimeter-accuracy positioning for mobile and wearable sensor systems. In this paper, we propose a novel, high-precision, efficient visual-inertial (VI)-SLAM algorithm, termed Schmidt-EKF VI-SLAM (SEVIS), which optimally fuses IMU measurements and monocular images in a tightly-coupled manner to provide 3D motion tracking with bounded error. In particular, we adapt the Schmidt Kalman filter formulation to selectively include informative features in the state vector while treating them as nuisance parameters (or Schmidt states) once they become matured. This change in modeling allows for significant computational savings by no longer needing to constantly update the Schmidt states (or their covariance), while still allowing the EKF to correctly account for their cross-correlations with the active states. As a result, we achieve linear computational complexity in terms of map size, instead of quadratic as in the standard SLAM systems. In order to fully exploit the map information to bound navigation drifts, we advocate efficient keyframe-aided 2D-to-2D feature matching to find reliable correspondences between current 2D visual measurements and 3D map features. The proposed SEVIS is extensively validated in both simulations and experiments.

Accep...

Accepted to the 2019 Conference on Computer Vision and Pattern Recognition (CVPR)

Observability Analysis of Aided INS with Heterogeneous Features of Points, Lines and Planes 2018-05-12
Show

In this paper, we perform a thorough observability analysis for linearized inertial navigation systems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR and sonars) with different geometric features (points, lines and planes). While the observability of vision-aided INS (VINS) with point features has been extensively studied in the literature, we analytically show that the general aided INS with point features preserves the same observability property: that is, 4 unobservable directions, corresponding to the global yaw and the global position of the sensor platform. We further prove that there are at least 5 (and 7) unobservable directions for the linearized aided INS with a single line (and plane) feature; and, for the first time, analytically derive the unobservable subspace for the case of multiple lines/planes. Building upon this, we examine the system observability of the linearized aided INS with different combinations of points, lines and planes, and show that, in general, the system preserves at least 4 unobservable directions, while if global measurements are available, as expected, some unobservable directions diminish. In particular, when using plane features, we propose to use a minimal, closest point (CP) representation; and we also study in-depth the effects of 5 degenerate motions identified on observability. To numerically validate our analysis, we develop and evaluate both EKF-based visual-inertial SLAM and visual-inertial odometry (VIO) using heterogeneous geometric features in Monte Carlo simulations.

Accurate Monocular Visual-inertial SLAM using a Map-assisted EKF Approach 2018-03-31
Show

This paper presents a novel tightly-coupled monocular visual-inertial Simultaneous Localization and Mapping algorithm, which provides accurate and robust localization within the globally consistent map in real time on a standard CPU. This is achieved by firstly performing the visual-inertial extended kalman filter(EKF) to provide motion estimate at a high rate. However the filter becomes inconsistent due to the well known linearization issues. So we perform a keyframe-based visual-inertial bundle adjustment to improve the consistency and accuracy of the system. In addition, a loop closure detection and correction module is also added to eliminate the accumulated drift when revisiting an area. Finally, the optimized motion estimates and map are fed back to the EKF-based visual-inertial odometry module, thus the inconsistency and estimation error of the EKF estimator are reduced. In this way, the system can continuously provide reliable motion estimates for the long-term operation. The performance of the algorithm is validated on public datasets and real-world experiments, which proves the superiority of the proposed algorithm.

12 pages, 10 figures
Relocalization, Global Optimization and Map Merging for Monocular Visual-Inertial SLAM 2018-03-05
Show

The monocular visual-inertial system (VINS), which consists one camera and one low-cost inertial measurement unit (IMU), is a popular approach to achieve accurate 6-DOF state estimation. However, such locally accurate visual-inertial odometry is prone to drift and cannot provide absolute pose estimation. Leveraging history information to relocalize and correct drift has become a hot topic. In this paper, we propose a monocular visual-inertial SLAM system, which can relocalize camera and get the absolute pose in a previous-built map. Then 4-DOF pose graph optimization is performed to correct drifts and achieve global consistent. The 4-DOF contains x, y, z, and yaw angle, which is the actual drifted direction in the visual-inertial system. Furthermore, the proposed system can reuse a map by saving and loading it in an efficient way. Current map and previous map can be merged together by the global pose graph optimization. We validate the accuracy of our system on public datasets and compare against other state-of-the-art algorithms. We also evaluate the map merging ability of our system in the large-scale outdoor environment. The source code of map reuse is integrated into our public code, VINS-Mono.

8 pages
PIRVS: An Advanced Visual-Inertial SLAM System with Flexible Sensor Fusion and Hardware Co-Design 2017-10-02
Show

In this paper, we present the PerceptIn Robotics Vision System (PIRVS) system, a visual-inertial computing hardware with embedded simultaneous localization and mapping (SLAM) algorithm. The PIRVS hardware is equipped with a multi-core processor, a global-shutter stereo camera, and an IMU with precise hardware synchronization. The PIRVS software features a novel and flexible sensor fusion approach to not only tightly integrate visual measurements with inertial measurements and also to loosely couple with additional sensor modalities. It runs in real-time on both PC and the PIRVS hardware. We perform a thorough evaluation of the proposed system using multiple public visual-inertial datasets. Experimental results demonstrate that our system reaches comparable accuracy of state-of-the-art visual-inertial algorithms on PC, while being more efficient on the PIRVS hardware.

Keyframe-Based Visual-Inertial Online SLAM with Relocalization 2017-03-02
Show

Complementing images with inertial measurements has become one of the most popular approaches to achieve highly accurate and robust real-time camera pose tracking. In this paper, we present a keyframe-based approach to visual-inertial simultaneous localization and mapping (SLAM) for monocular and stereo cameras. Our visual-inertial SLAM system is based on a real-time capable visual-inertial odometry method that provides locally consistent trajectory and map estimates. We achieve global consistency in the estimate through online loop-closing and non-linear optimization. Furthermore, our system supports relocalization in a map that has been previously obtained and allows for continued SLAM operation. We evaluate our approach in terms of accuracy, relocalization capability and run-time efficiency on public indoor benchmark datasets and on newly recorded outdoor sequences. We demonstrate state-of-the-art performance of our system compared to a visual-inertial odometry method and baseline visual SLAM approaches in recovering the trajectory of the camera.

Visual Inertial Odometry

Title Date Abstract Comment
SCREP: Scene Coordinate Regression and Evidential Learning-based Perception-Aware Trajectory Generation 2025-07-10
Show

Autonomous flight in GPS denied indoor spaces requires trajectories that keep visual localization error tightly bounded across varied missions. Whereas visual inertial odometry (VIO) accumulates drift over time, scene coordinate regression (SCR) yields drift-free, high accuracy absolute pose estimation. We present a perception-aware framework that couples an evidential learning-based SCR pose estimator with a receding horizon trajectory optimizer. The optimizer steers the onboard camera toward pixels whose uncertainty predicts reliable scene coordinates, while a fixed-lag smoother fuses the low rate SCR stream with high rate IMU data to close the perception control loop in real time. In simulation, our planner reduces translation (rotation) mean error by 54% / 15% (40% / 31%) relative to yaw fixed and forward-looking baselines, respectively. Moreover, hardware in the loop experiment validates the feasibility of our proposed framework.

8 pag...

8 pages, 7 figures, 3 tables

Event-based Stereo Visual-Inertial Odometry with Voxel Map 2025-06-29
Show

The event camera, renowned for its high dynamic range and exceptional temporal resolution, is recognized as an important sensor for visual odometry. However, the inherent noise in event streams complicates the selection of high-quality map points, which critically determine the precision of state estimation. To address this challenge, we propose Voxel-ESVIO, an event-based stereo visual-inertial odometry system that utilizes voxel map management, which efficiently filter out high-quality 3D points. Specifically, our methodology utilizes voxel-based point selection and voxel-aware point management to collectively optimize the selection and updating of map points on a per-voxel basis. These synergistic strategies enable the efficient retrieval of noise-resilient map points with the highest observation likelihood in current frames, thereby ensureing the state estimation accuracy. Extensive evaluations on three public benchmarks demonstrate that our Voxel-ESVIO outperforms state-of-the-art methods in both accuracy and computational efficiency.

Cooperative Circumnavigation for Multi-Quadrotor Systems via Onboard Sensing 2025-06-26
Show

A cooperative circumnavigation framework is proposed for multi-quadrotor systems to enclose and track a moving target without reliance on external localization systems. The distinct relationships between quadrotor-quadrotor and quadrotor-target interactions are evaluated using a heterogeneous perception strategy and corresponding state estimation algorithms. A modified Kalman filter is developed to fuse visual-inertial odometry with range measurements to enhance the accuracy of inter-quadrotor relative localization. An event-triggered distributed Kalman filter is designed to achieve robust target state estimation under visual occlusion by incorporating neighbor measurements and estimated inter-quadrotor relative positions. Using the estimation results, a cooperative circumnavigation controller is constructed, leveraging an oscillator-based autonomous formation flight strategy. We conduct extensive indoor and outdoor experiments to validate the efficiency of the proposed circumnavigation framework in occluded environments. Furthermore, a quadrotor failure experiment highlights the inherent fault tolerance property of the proposed framework, underscoring its potential for deployment in search-and-rescue operations.

8 Pag...

8 Pages, 7 figures. Accepted by RA-L

LunarLoc: Segment-Based Global Localization on the Moon 2025-06-20
Show

Global localization is necessary for autonomous operations on the lunar surface where traditional Earth-based navigation infrastructure, such as GPS, is unavailable. As NASA advances toward sustained lunar presence under the Artemis program, autonomous operations will be an essential component of tasks such as robotic exploration and infrastructure deployment. Tasks such as excavation and transport of regolith require precise pose estimation, but proposed approaches such as visual-inertial odometry (VIO) accumulate odometry drift over long traverses. Precise pose estimation is particularly important for upcoming missions such as the ISRU Pilot Excavator (IPEx) that rely on autonomous agents to operate over extended timescales and varied terrain. To help overcome odometry drift over long traverses, we propose LunarLoc, an approach to global localization that leverages instance segmentation for zero-shot extraction of boulder landmarks from onboard stereo imagery. Segment detections are used to construct a graph-based representation of the terrain, which is then aligned with a reference map of the environment captured during a previous session using graph-theoretic data association. This method enables accurate and drift-free global localization in visually ambiguous settings. LunarLoc achieves sub-cm level accuracy in multi-session global localization experiments, significantly outperforming the state of the art in lunar global localization. To encourage the development of further methods for global localization on the Moon, we release our datasets publicly with a playback module: https://github.com/mit-acl/lunarloc-data.

4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in Autonomous Driving 2025-06-19
Show

We present a novel dataset covering seasonal and challenging perceptual conditions for autonomous driving. Among others, it enables research on visual odometry, global place recognition, and map-based re-localization tracking. The data was collected in different scenarios and under a wide variety of weather conditions and illuminations, including day and night. This resulted in more than 350 km of recordings in nine different environments ranging from multi-level parking garage over urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up-to centimeter accuracy obtained from the fusion of direct stereo visual-inertial odometry with RTK-GNSS. The full dataset is available at https://go.vision.in.tum.de/4seasons.

Germa...

German Conference on Pattern Recognition (GCPR 2020)

Real-Time Initialization of Unknown Anchors for UWB-aided Navigation 2025-06-18
Show

This paper presents a framework for the real-time initialization of unknown Ultra-Wideband (UWB) anchors in UWB-aided navigation systems. The method is designed for localization solutions where UWB modules act as supplementary sensors. Our approach enables the automatic detection and calibration of previously unknown anchors during operation, removing the need for manual setup. By combining an online Positional Dilution of Precision (PDOP) estimation, a lightweight outlier detection method, and an adaptive robust kernel for non-linear optimization, our approach significantly improves robustness and suitability for real-world applications compared to state-of-the-art. In particular, we show that our metric which triggers an initialization decision is more conservative than current ones commonly based on initial linear or non-linear initialization guesses. This allows for better initialization geometry and subsequently lower initialization errors. We demonstrate the proposed approach on two different mobile robots: an autonomous forklift and a quadcopter equipped with a UWB-aided Visual-Inertial Odometry (VIO) framework. The results highlight the effectiveness of the proposed method with robust initialization and low positioning error. We open-source our code in a C++ library including a ROS wrapper.

Structureless VIO 2025-06-16
Show

Visual odometry (VO) is typically considered as a chicken-and-egg problem, as the localization and mapping modules are tightly-coupled. The estimation of a visual map relies on accurate localization information. Meanwhile, localization requires precise map points to provide motion constraints. This classical design principle is naturally inherited by visual-inertial odometry (VIO). Efficient localization solutions that do not require a map have not been fully investigated. To this end, we propose a novel structureless VIO, where the visual map is removed from the odometry framework. Experimental results demonstrated that, compared to the structure-based VIO baseline, our structureless VIO not only substantially improves computational efficiency but also has advantages in accuracy.

Accep...

Accepted by the SLAM Workshop at RSS 2025

A Novel ViDAR Device With Visual Inertial Encoder Odometry and Reinforcement Learning-Based Active SLAM Method 2025-06-16
Show

In the field of multi-sensor fusion for simultaneous localization and mapping (SLAM), monocular cameras and IMUs are widely used to build simple and effective visual-inertial systems. However, limited research has explored the integration of motor-encoder devices to enhance SLAM performance. By incorporating such devices, it is possible to significantly improve active capability and field of view (FOV) with minimal additional cost and structural complexity. This paper proposes a novel visual-inertial-encoder tightly coupled odometry (VIEO) based on a ViDAR (Video Detection and Ranging) device. A ViDAR calibration method is introduced to ensure accurate initialization for VIEO. In addition, a platform motion decoupled active SLAM method based on deep reinforcement learning (DRL) is proposed. Experimental data demonstrate that the proposed ViDAR and the VIEO algorithm significantly increase cross-frame co-visibility relationships compared to its corresponding visual-inertial odometry (VIO) algorithm, improving state estimation accuracy. Additionally, the DRL-based active SLAM algorithm, with the ability to decouple from platform motion, can increase the diversity weight of the feature points and further enhance the VIEO algorithm's performance. The proposed methodology sheds fresh insights into both the updated platform design and decoupled approach of active SLAM systems in complex environments.

12 pages, 13 figures
VAULT: A Mobile Mapping System for ROS 2-based Autonomous Robots 2025-06-11
Show

Localization plays a crucial role in the navigation capabilities of autonomous robots, and while indoor environments can rely on wheel odometry and 2D LiDAR-based mapping, outdoor settings such as agriculture and forestry, present unique challenges that necessitate real-time localization and consistent mapping. Addressing this need, this paper introduces the VAULT prototype, a ROS 2-based mobile mapping system (MMS) that combines various sensors to enable robust outdoor and indoor localization. The proposed solution harnesses the power of Global Navigation Satellite System (GNSS) data, visual-inertial odometry (VIO), inertial measurement unit (IMU) data, and the Extended Kalman Filter (EKF) to generate reliable 3D odometry. To further enhance the localization accuracy, Visual SLAM (VSLAM) is employed, resulting in the creation of a comprehensive 3D point cloud map. By leveraging these sensor technologies and advanced algorithms, the prototype offers a comprehensive solution for outdoor localization in autonomous mobile robots, enabling them to navigate and map their surroundings with confidence and precision.

15 pa...

15 pages, 5 figures, Submitted to WAF 2023: Workshop de Agentes Fisicos

Olfactory Inertial Odometry: Sensor Calibration and Drift Compensation 2025-06-05
Show

Visual inertial odometry (VIO) is a process for fusing visual and kinematic data to understand a machine's state in a navigation task. Olfactory inertial odometry (OIO) is an analog to VIO that fuses signals from gas sensors with inertial data to help a robot navigate by scent. Gas dynamics and environmental factors introduce disturbances into olfactory navigation tasks that can make OIO difficult to facilitate. With our work here, we define a process for calibrating a robot for OIO that generalizes to several olfaction sensor types. Our focus is specifically on calibrating OIO for centimeter-level accuracy in localizing an odor source on a slow-moving robot platform to demonstrate use cases in robotic surgery and touchless security screening. We demonstrate our process for OIO calibration on a real robotic arm and show how this calibration improves performance over a cold-start olfactory navigation task.

Publi...

Published as a full conference paper at the 2025 IEEE International Symposium on Inertial Sensors & Systems

Photoreal Scene Reconstruction from an Egocentric Device 2025-06-04
Show

In this paper, we investigate the challenges associated with using egocentric devices to photorealistic reconstruct the scene in high dynamic range. Existing methodologies typically assume using frame-rate 6DoF pose estimated from the device's visual-inertial odometry system, which may neglect crucial details necessary for pixel-accurate reconstruction. This study presents two significant findings. Firstly, in contrast to mainstream work treating RGB camera as global shutter frame-rate camera, we emphasize the importance of employing visual-inertial bundle adjustment (VIBA) to calibrate the precise timestamps and movement of the rolling shutter RGB sensing camera in a high frequency trajectory format, which ensures an accurate calibration of the physical properties of the rolling-shutter camera. Secondly, we incorporate a physical image formation model based into Gaussian Splatting, which effectively addresses the sensor characteristics, including the rolling-shutter effect of RGB cameras and the dynamic ranges measured by sensors. Our proposed formulation is applicable to the widely-used variants of Gaussian Splats representation. We conduct a comprehensive evaluation of our pipeline using the open-source Project Aria device under diverse indoor and outdoor lighting conditions, and further validate it on a Meta Quest3 device. Across all experiments, we observe a consistent visual enhancement of +1 dB in PSNR by incorporating VIBA, with an additional +1 dB achieved through our proposed image formation model. Our complete implementation, evaluation datasets, and recording profile are available at http://www.projectaria.com/photoreal-reconstruction/

Paper...

Paper accepted to SIGGRAPH Conference Paper 2025

Olfactory Inertial Odometry: Methodology for Effective Robot Navigation by Scent 2025-06-03
Show

Olfactory navigation is one of the most primitive mechanisms of exploration used by organisms. Navigation by machine olfaction (artificial smell) is a very difficult task to both simulate and solve. With this work, we define olfactory inertial odometry (OIO), a framework for using inertial kinematics, and fast-sampling olfaction sensors to enable navigation by scent analogous to visual inertial odometry (VIO). We establish how principles from SLAM and VIO can be extrapolated to olfaction to enable real-world robotic tasks. We demonstrate OIO with three different odour localization algorithms on a real 5-DoF robot arm over an odour-tracking scenario that resembles real applications in agriculture and food quality control. Our results indicate success in establishing a baseline framework for OIO from which other research in olfactory navigation can build, and we note performance enhancements that can be made to address more complex tasks in the future.

Robust Localization, Mapping, and Navigation for Quadruped Robots 2025-05-28
Show

Quadruped robots are currently a widespread platform for robotics research, thanks to powerful Reinforcement Learning controllers and the availability of cheap and robust commercial platforms. However, to broaden the adoption of the technology in the real world, we require robust navigation stacks relying only on low-cost sensors such as depth cameras. This paper presents a first step towards a robust localization, mapping, and navigation system for low-cost quadruped robots. In pursuit of this objective we combine contact-aided kinematic, visual-inertial odometry, and depth-stabilized vision, enhancing stability and accuracy of the system. Our results in simulation and two different real-world quadruped platforms show that our system can generate an accurate 2D map of the environment, robustly localize itself, and navigate autonomously. Furthermore, we present in-depth ablation studies of the important components of the system and their impact on localization accuracy. Videos, code, and additional experiments can be found on the project website: https://sites.google.com/view/low-cost-quadruped-slam

8 Pages
Robust Reinforcement Learning-Based Locomotion for Resource-Constrained Quadrupeds with Exteroceptive Sensing 2025-05-18
Show

Compact quadrupedal robots are proving increasingly suitable for deployment in real-world scenarios. Their smaller size fosters easy integration into human environments. Nevertheless, real-time locomotion on uneven terrains remains challenging, particularly due to the high computational demands of terrain perception. This paper presents a robust reinforcement learning-based exteroceptive locomotion controller for resource-constrained small-scale quadrupeds in challenging terrains, which exploits real-time elevation mapping, supported by a careful depth sensor selection. We concurrently train both a policy and a state estimator, which together provide an odometry source for elevation mapping, optionally fused with visual-inertial odometry (VIO). We demonstrate the importance of positioning an additional time-of-flight sensor for maintaining robustness even without VIO, thus having the potential to free up computational resources. We experimentally demonstrate that the proposed controller can flawlessly traverse steps up to 17.5 cm in height and achieve an 80% success rate on 22.5 cm steps, both with and without VIO. The proposed controller also achieves accurate forward and yaw velocity tracking of up to 1.0 m/s and 1.5 rad/s respectively. We open-source our training code at github.com/ETH-PBL/elmap-rl-controller.

This ...

This paper has been accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), Atlanta 2025. The code is available at github.com/ETH-PBL/elmap-rl-controller

Learned IMU Bias Prediction for Invariant Visual Inertial Odometry 2025-05-10
Show

Autonomous mobile robots operating in novel environments depend critically on accurate state estimation, often utilizing visual and inertial measurements. Recent work has shown that an invariant formulation of the extended Kalman filter improves the convergence and robustness of visual-inertial odometry by utilizing the Lie group structure of a robot's position, velocity, and orientation states. However, inertial sensors also require measurement bias estimation, yet introducing the bias in the filter state breaks the Lie group symmetry. In this paper, we design a neural network to predict the bias of an inertial measurement unit (IMU) from a sequence of previous IMU measurements. This allows us to use an invariant filter for visual inertial odometry, relying on the learned bias prediction rather than introducing the bias in the filter state. We demonstrate that an invariant multi-state constraint Kalman filter (MSCKF) with learned bias predictions achieves robust visual-inertial odometry in real experiments, even when visual information is unavailable for extended periods and the system needs to rely solely on IMU measurements.

This ...

This work has been submitted to the IEEE for possible publication

Edge-Enabled VIO with Long-Tracked Features for High-Accuracy Low-Altitude IoT Navigation 2025-05-10
Show

This paper presents a visual-inertial odometry (VIO) method using long-tracked features. Long-tracked features can constrain more visual frames, reducing localization drift. However, they may also lead to accumulated matching errors and drift in feature tracking. Current VIO methods adjust observation weights based on re-projection errors, yet this approach has flaws. Re-projection errors depend on estimated camera poses and map points, so increased errors might come from estimation inaccuracies, not actual feature tracking errors. This can mislead the optimization process and make long-tracked features ineffective for suppressing localization drift. Furthermore, long-tracked features constrain a larger number of frames, which poses a significant challenge to real-time performance of the system. To tackle these issues, we propose an active decoupling mechanism for accumulated errors in long-tracked feature utilization. We introduce a visual reference frame reset strategy to eliminate accumulated tracking errors and a depth prediction strategy to leverage the long-term constraint. To ensure real time preformane, we implement three strategies for efficient system state estimation: a parallel elimination strategy based on predefined elimination order, an inverse-depth elimination simplification strategy, and an elimination skipping strategy. Experiments on various datasets show that our method offers higher positioning accuracy with relatively short consumption time, making it more suitable for edge-enabled low-altitude IoT navigation, where high-accuracy positioning and real-time operation on edge device are required. The code will be published at github.

9 pag...

9 pages with 9 figures

LPVIMO-SAM: Tightly-coupled LiDAR/Polarization Vision/Inertial/Magnetometer/Optical Flow Odometry via Smoothing and Mapping 2025-04-29
Show

We propose a tightly-coupled LiDAR/Polarization Vision/Inertial/Magnetometer/Optical Flow Odometry via Smoothing and Mapping (LPVIMO-SAM) framework, which integrates LiDAR, polarization vision, inertial measurement unit, magnetometer, and optical flow in a tightly-coupled fusion. This framework enables high-precision and highly robust real-time state estimation and map construction in challenging environments, such as LiDAR-degraded, low-texture regions, and feature-scarce areas. The LPVIMO-SAM comprises two subsystems: a Polarized Vision-Inertial System and a LiDAR/Inertial/Magnetometer/Optical Flow System. The polarized vision enhances the robustness of the Visual/Inertial odometry in low-feature and low-texture scenarios by extracting the polarization information of the scene. The magnetometer acquires the heading angle, and the optical flow obtains the speed and height to reduce the accumulated error. A magnetometer heading prior factor, an optical flow speed observation factor, and a height observation factor are designed to eliminate the cumulative errors of the LiDAR/Inertial odometry through factor graph optimization. Meanwhile, the LPVIMO-SAM can maintain stable positioning even when one of the two subsystems fails, further expanding its applicability in LiDAR-degraded, low-texture, and low-feature environments. Code is available on https://github.com/junxiaofanchen/LPVIMO-SAM.

submi...

submitted to IROS2025

Debiasing 6-DOF IMU via Hierarchical Learning of Continuous Bias Dynamics 2025-04-23
Show

This paper develops a deep learning approach to the online debiasing of IMU gyroscopes and accelerometers. Most existing methods rely on implicitly learning a bias term to compensate for raw IMU data. Explicit bias learning has recently shown its potential as a more interpretable and motion-independent alternative. However, it remains underexplored and faces challenges, particularly the need for ground truth bias data, which is rarely available. To address this, we propose a neural ordinary differential equation (NODE) framework that explicitly models continuous bias dynamics, requiring only pose ground truth, often available in datasets. This is achieved by extending the canonical NODE framework to the matrix Lie group for IMU kinematics with a hierarchical training strategy. The validation on two public datasets and one real-world experiment demonstrates significant accuracy improvements in IMU measurements, reducing errors in both pure IMU integration and visual-inertial odometry.

Accep...

Accepted by Robotics: Science and Systems, 2025

MILUV: A Multi-UAV Indoor Localization dataset with UWB and Vision 2025-04-19
Show

This paper introduces MILUV, a Multi-UAV Indoor Localization dataset with UWB and Vision measurements. This dataset comprises 217 minutes of flight time over 36 experiments using three quadcopters, collecting ultra-wideband (UWB) ranging data such as the raw timestamps and channel-impulse response data, vision data from a stereo camera and a bottom-facing monocular camera, inertial measurement unit data, height measurements from a laser rangefinder, magnetometer data, and ground-truth poses from a motion-capture system. The UWB data is collected from up to 12 transceivers affixed to mobile robots and static tripods in both line-of-sight and non-line-of-sight conditions. The UAVs fly at a maximum speed of 4.418 m/s in an indoor environment with visual fiducial markers as features. MILUV is versatile and can be used for a wide range of applications beyond localization, but the primary purpose of MILUV is for testing and validating multi-robot UWB- and vision-based localization algorithms. The dataset can be downloaded at https://doi.org/10.25452/figshare.plus.28386041.v1. A development kit is presented alongside the MILUV dataset, which includes benchmarking algorithms such as visual-inertial odometry, UWB-based localization using an extended Kalman filter, and classification of CIR data using machine learning approaches. The development kit can be found at https://github.com/decargroup/miluv, and is supplemented with a website available at https://decargroup.github.io/miluv/.

18 pages, 15 figures
Multi-Robot Coordination with Adversarial Perception 2025-04-12
Show

This paper investigates the resilience of perception-based multi-robot coordination with wireless communication to online adversarial perception. A systematic study of this problem is essential for many safety-critical robotic applications that rely on the measurements from learned perception modules. We consider a (small) team of quadrotor robots that rely only on an Inertial Measurement Unit (IMU) and the visual data measurements obtained from a learned multi-task perception module (e.g., object detection) for downstream tasks, including relative localization and coordination. We focus on a class of adversarial perception attacks that cause misclassification, mislocalization, and latency. We propose that the effects of adversarial misclassification and mislocalization can be modeled as sporadic (intermittent) and spurious measurement data for the downstream tasks. To address this, we present a framework for resilience analysis of multi-robot coordination with adversarial measurements. The framework integrates data

About

📚这个仓库是在arxiv上收集的有关VLN,VLA, SLAM,Gaussian Splatting,非线性优化等相关论文。每天都会自动更新!issue区域是最新10篇论文

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages