Open
Description
Expected Behaviour
ONNXRuntime should be consistent with displaying -FLT_MAX,
Actual Behaviour
`––––– MISMATCH DETECTED –––––
Not equal to tolerance rtol=0.01, atol=0.001
x and y nan location mismatch:
x: array([[[ 7.828446e-01, -3.402823e+38, 3.303281e-01, ...,
9.437089e-01, 6.650881e-01, -3.402823e+38],
[ 6.911096e-01, 5.645327e-02, 1.617989e-01, ...,...
y: array([[[0.782845, nan, 0.330328, ..., nan, 0.665088,
nan],
[0.69111 , 0.056453, nan, ..., 0.88878 , nan,...`
1.617989e^-01 was displayed instead of -FLT_MAX
Reproduce
import random
import sys, os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import torch
import torch.nn as nn
import torch.nn.functional as F
import tempfile
import onnx
import onnxruntime as ort
from numpy.testing import assert_allclose
import tvm
from tvm import relay
from tvm.contrib import graph_executor
import numpy as np
import nas_model_2
class SimpleBugModel(nn.Module):
def __init__(self):
super().__init__()
self.input_conv = torch.nn.modules.conv.Conv2d(in_channels=3, out_channels=16, kernel_size=1)
self.block1 = nas_model_2.SqrtWrapper()
self.block2 = torch.nn.modules.flatten.Flatten(start_dim=2)
self.block3 = torch.nn.modules.pooling.MaxPool1d(kernel_size=2, stride=2, ceil_mode=True)
def forward(self, x):
__input_conv = self.input_conv(x)
__blocks__1 = self.block1(__input_conv)
__blocks__2 = self.block2(__blocks__1)
__blocks__3 = self.block3(__blocks__2)
return __blocks__3
def main():
seed = 811777723
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
model = SimpleBugModel()
model.eval()
dummy = torch.randn(1, 3, 32, 32, dtype=torch.float32)
with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as tmp:
onnx_path = tmp.name
torch.onnx.export(model, dummy, onnx_path, opset_version=19, input_names=['input'], output_names=['output'])
ort_sess = ort.InferenceSession(onnx_path, providers=['CPUExecutionProvider'])
ort_out = ort_sess.run(None, {'input': dummy.numpy()})[0]
print('ORT output shape:', ort_out)
onnx_model = onnx.load(onnx_path)
shape_dict = {'input': dummy.numpy().shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict, freeze_params=True)
with tvm.transform.PassContext(opt_level=4):
lib = relay.build(mod, target='llvm', params=params)
m = graph_executor.GraphModule(lib['default'](tvm.cpu()))
m.set_input('input', tvm.nd.array(dummy.numpy()))
m.run()
tvm_out = m.get_output(0)
tvm_out = tvm_out.numpy()
print('TVM output shape:', tvm_out)
try:
assert_allclose(ort_out, tvm_out, rtol=1e-2, atol=1e-3, equal_nan=True)
except AssertionError as e:
print('––––– MISMATCH DETECTED –––––')
print(e)
except Exception as e:
print('––––– UNEXPECTED ERROR DURING COMPARISON –––––')
print(f'{type(e).__name__}: {e}')
if __name__ == '__main__':
main()
## nas_model_2
@basic_unit
class SqrtWrapper(nni_nn.Module):
def forward(self, x):
return torch.sqrt(x)
Versions
ONNXRuntime: 0.16.3
TVM: 0.17.0