A flexible and extensible task processing system that allows you to schedule, execute, and monitor tasks with ease.
- Flexible Task Scheduling: Support for recurring and one-time tasks
- Extensible Plugin System: Easy integration with various services and databases
- Robust Error Handling: Built-in retry mechanisms and error logging
- YAML Configuration: Simple task configuration using YAML files
- Comprehensive Logging: Detailed logging with rotation and retention policies
- Type Safety: Full type hints and validation using Pydantic
pip install git+https://github.com/sharik709/task-runner.git
pip install -i https://test.pypi.org/simple/ taskops
pip install taskops
This will install TaskOps along with its dependencies (pydantic, schedule, loguru, and pyyaml).
- Create a task configuration file (
tasks.yaml
):
tasks:
- name: "backup_database"
command: "pg_dump mydb > backup.sql"
schedule:
type: "recurring"
interval: "1d"
retry:
max_attempts: 3
delay: 300 # 5 minutes
- Run the task processor:
taskops --config-dir /path/to/config
Tasks can be configured using YAML files. Each task can have the following properties:
name: "task_name" # Unique identifier for the task
command: "command_to_run" # Shell command to execute
schedule:
type: "recurring" # or "one-time"
interval: "1h" # for recurring tasks (e.g., "1m", "1h", "1d")
start_time: "2024-02-20T10:00:00" # for one-time tasks
retry:
max_attempts: 3 # Maximum number of retry attempts
delay: 60 # Delay between retries in seconds
taskops [OPTIONS]
Options:
--config-dir TEXT Directory containing task configuration files
--log-dir TEXT Directory for log files
--max-log-files INT Maximum number of log files to keep per task
--help Show this message and exit
You can also use TaskOps directly in your Python code:
from datetime import datetime
from task_processor import Task, Schedule, RetryConfig, TaskScheduler, LogManager, LogConfig
# Initialize logging (optional but recommended)
log_config = LogConfig(log_dir="./logs")
log_manager = LogManager(log_config)
# Create a task scheduler with logging
scheduler = TaskScheduler(log_manager=log_manager)
# Define a recurring task
recurring_task = Task(
name="data_processing",
command="python process_data.py",
schedule=Schedule(
type="recurring",
interval="1h" # Run every hour
),
retry=RetryConfig(
max_attempts=3,
delay=60 # Retry after 60 seconds
)
)
# Define a one-time task
one_time_task = Task(
name="database_cleanup",
command="python cleanup_db.py",
schedule=Schedule(
type="one-time",
start_time=datetime(2024, 5, 1, 3, 0, 0) # Run at 3 AM on May 1, 2024
),
retry=RetryConfig(
max_attempts=2,
delay=300 # Retry after 5 minutes
)
)
# Add tasks to the scheduler
scheduler.add_task(recurring_task)
scheduler.add_task(one_time_task)
# Start the scheduler (this will block and run until stopped)
try:
print("Task scheduler is running. Press Ctrl+C to stop.")
scheduler.run()
except KeyboardInterrupt:
print("Shutting down scheduler...")
scheduler.stop()
For a complete working example, see example_taskops.py.
- Clone the repository:
git clone https://github.com/sharik709/task-runner.git
cd task-runner
- Create and activate a virtual environment:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install development dependencies:
pip install -r requirements.txt
pytest
For coverage report:
pytest --cov=task_processor --cov-report=term-missing
See CONTRIBUTING.md for guidelines.
This project is licensed under the MIT License - see the LICENSE file for details.