Skip to content

theainerd/Indic-Languages-Wav2Vec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Indic-Languages-Wav2Vec

This contains Indian Languages Wav2Vec2 Implementation and details. Work in progress. !! Also I'm sharing a sample script for hindi most of the models can run in the same way. Currently two models are available on model hub Odia and Hindi.

Wav2Vec2-Large-XLSR-53-hindi

Fine-tuned facebook/wav2vec2-large-xlsr-53 hindi using the Multilingual and code-switching ASR challenges for low resource Indian languages. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "hi", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
  logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the hindi test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model.to("cuda")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

  with torch.no_grad():
      logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

      pred_ids = torch.argmax(logits, dim=-1)
      batch["pred_strings"] = processor.batch_decode(pred_ids)
      return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 72.62 %

Training

The script used for training can be found Hindi ASR Fine Tuning Wav2Vec2

About

This contains Indian Languages Wav2Vec2 Implementation and details. Work in progress. !!

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published