Skip to content

IntptrMax/YoloSharp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YoloSharp

Train Yolo model in C# with TorchSharp.
With the help of this project you won't have to transform .pt model to onnx, and can train your own model in C#.

Feature

  • Written in C# only.
  • Train and predict your own model.
  • Support Yolov5, Yolov5u, Yolov8, Yolov11 and Yolov12 now.
  • Support Predict and Segment now.
  • Support n/s/m/l/x size.
  • Support LetterBox and Mosaic4 method for preprocessing images.
  • Support NMS with GPU.
  • Support Load PreTrained models from ultralytics/yolov5/yolov8/yolo11 and yolov12(converted).

Models

You can download yolov5/yolov8 pre-trained models here.

Prediction Checkpoints
model n s m l x
yolov5 yolov5n yolov5s yolov5m yolov5l yolov5x
yolov5 yolov5nu yolov5su yolov5mu yolov5lu yolov5xu
yolov8 yolov8n yolov8s yolov8m yolov8l yolov8x
yolov11 yolov11n yolov11s yolov11m yolov11l yolov11x
Segmention Checkpoints
model n s m l x
yolov8 yolov8n yolov8s yolov8m yolov8l yolov8x
yolov11 yolov11n yolov11s yolov11m yolov11l yolov11x

How to use

You can download the code or add it from nuget.

dotnet add package IntptrMax.YoloSharp

In your code you can use it as below.

Predict

You can use it with the code below:

Bitmap inputBitmap = new Bitmap(predictImagePath);

// Create predictor
Predictor predictor = new Predictor(sortCount, yoloType: yoloType, deviceType: deviceType, yoloSize: yoloSize, dtype: dtype);

// Train model
predictor.LoadModel(preTraindModelPath);
predictor.Train(trainDataPath, valDataPath, outputPath: outputPath, batchSize: batchSize, epochs: epochs);

// Predict image
predictor.LoadModel(Path.Combine(outputPath, "best.bin"));

var results = predictor.ImagePredict(inputBitmap, predictThreshold, iouThreshold);

Use yolov5n pre-trained model to detect.

image

Segment

You can use it with the code below:

// Create segmenter
Segmenter segmenter = new Segmenter(sortCount, yoloType: yoloType, deviceType: deviceType, yoloSize: yoloSize, dtype: dtype);

// Train model
segmenter.LoadModel(preTraindModelPath);
segmenter.Train(trainDataPath, valDataPath, outputPath: outputPath, batchSize: batchSize, epochs: epochs, useMosaic: false);

// Segment image
segmenter.LoadModel("output/best.bin");
Bitmap testBitmap = new Bitmap(predictImagePath);
var (predictResult, bitmap) = segmenter.ImagePredict(testBitmap, predictThreshold, iouThreshold);

Use yolov8n-seg pre-trained model to detect.

pred_seg