Skip to content

KleistLab/PrEP_Numerics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

4ee4648 · Aug 6, 2021

History

7 Commits
Jun 2, 2021
Aug 6, 2021
Jun 28, 2021
Jun 28, 2021
Jun 28, 2021
May 28, 2021
May 31, 2021
Jun 28, 2021
May 31, 2021

Repository files navigation

prophylaxis estimator

compute the prophylactic efficacy of DTG using different methods

Table of Contents

CLI

usage: ./prophylaxisEstimator.py <command> [options]

command:
  Choose one method for computing

  {extrande,ntm,ctsm,pgs}
    extrande            run method extrande
    ntm                 run next transition method
    ctsm                run constant time step method
    pgs                 run probability generating system

Run './prophylaxisEstimator.py COMMAND --help' for more information on a command

extrande

(Default setup may take hour to run)

usage: ./prophylaxisEstimator.py extrande [options]

optional arguments:
  -h, --help        show this help message and exit
  --mdose float     mass of DTG dose [mg] (default: 50)
  --adh float       adherence of drug taken (default: 1)
  --cdose int       count of doses in a regimen (default: 3)
  --inputfile str   specify the inputfile that contains the pharmacokinetic
                    parameters. For deterministic methods please input only                           
                    one set of pk parameters (default: PK_default.csv)                                
  --outputfile str  specify the name of output csv file (default:
                    extrande.csv)
  --ifpdf bool      if output the graphic of results in pdf (default: False)
  --csimul int      count of simulations (default: 5000)
  --tps list        time points to begin simulation, i.e. time of viral
                    exposure relative to timing of first dose [hr] (default:
                    [1,6,18,23])
  --vload str       int or str {"homo", "hetero"}, initial viral load, can be
                    fixed number or generated randomly according to the
                    transition mode (default: 1)

ntm

(Default setup may take several minutes to run)

usage: ./prophylaxisEstimator.py ntm [<options>]

optional arguments:
  -h, --help            show this help message and exit
  --mdose float         mass of DTG dose [mg] (default: 50)
  --adh float           adherence of drug taken (default: 1)
  --cdose int           count of doses in a regimen (default: 3)
  --inputfile str       specify the inputfile that contains the
                        pharmacokinetic parameters. For deterministic methods
                        please input only one set of pk parameters (default:
                        PK_default.csv)
  --outputfile str      specify the name of output csv file (default: ntm.csv)
  --ifpdf bool          if output the graphic of results in pdf (default:
                        False)
  --ts float            start time point to run the computation, relative to
                        timing of first dose [hr] (default: 0)
  --te float            end time point of the computation, relative to timing
                        of first dose [hr] (default: 240)
  --tspanres float      timespan in the output data [hr] should not be shorter
                        than timesteps (default: 1)
  --ifll bool           if long-lived and latently infected cells are
                        considered (default: False)
  --timesteps number number number
                        time steps for V, T1, T2, [min] Fraction like 1/6 is
                        allowed. For V and T1 the time steps should be same
                        and cannot be shorter than T2 (default: 10 10 1)
  --rate float          percentage of the observed next transition (default:
                        0.999)

ctsm

usage: ./prophylaxisEstimator.py ctsm [<options>]

optional arguments:
  -h, --help            show this help message and exit
  --mdose float         mass of DTG dose [mg] (default: 50)
  --adh float           adherence of drug taken (default: 1)
  --cdose int           count of doses in a regimen (default: 3)
  --inputfile str       specify the inputfile that contains the
                        pharmacokinetic parameters. For deterministic methods
                        please input only one set of pk parameters (default:
                        PK_default.csv)
  --outputfile str      specify the name of output csv file (default:
                        ctsm.csv)
  --ifpdf bool          if output the graphic of results in pdf (default:
                        False)
  --ts float            start time point to run the computation, relative to
                        timing of first dose [hr] (default: 0)
  --te float            end time point of the computation, relative to timing
                        of first dose [hr] (default: 240)
  --tspanres float      timespan in the output data [hr] should not be shorter
                        than timesteps (default: 1)
  --ifll bool           if long-lived and latently infected cells are
                        considered (default: False)
  --timesteps number number number
                        time steps for V, T1, T2, [min] Fraction like 1/6 is
                        allowed. For V and T1 the time steps should be same
                        and cannot be shorter than T2 (default: 10 10 1)

pgs

usage: ./prophylaxisEstimator.py pgs [<options>]

optional arguments:
  -h, --help        show this help message and exit
  --mdose float     mass of DTG dose [mg] (default: 50)
  --adh float       adherence of drug taken (default: 1)
  --cdose int       count of doses in a regimen (default: 3)
  --inputfile str   specify the inputfile that contains the pharmacokinetic
                    parameters. For deterministic methods please input only
                    one set of pk parameters (default: PK_default.csv)
  --outputfile str  specify the name of output csv file (default: pgs.csv)
  --ifpdf bool      if output the graphic of results in pdf (default: False)
  --ts float        start time point to run the computation, relative to
                    timing of first dose [hr] (default: 0)
  --te float        end time point of the computation, relative to timing of
                    first dose [hr] (default: 240)
  --tspanres float  timespan in the output data [hr] should not be shorter
                    than timesteps (default: 1)
  --ifll bool       if long-lived and latently infected cells are considered
                    (default: False)

Highlights

  • compute the prophylactic efficacy with four different methods, including one stochastic simulation (extrande) and three deterministic methods (ntm, ctsm and pgs)
  • deterministic methods are very efficient and can be applied in many cased, while extrande can be used to obtain the intermediate state
  • return the extinction probabilities and efficacies in csv file
  • Uses sane defaults, also provide many possible options

About

Environment:

The file config/env.yml can be used to create a (across-platform) conda environment that contains the necessary packages.

Running tests

$ cd test_dir
$ make test

Clean the generated files after test

$ make clean

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published