import logging import tensorflow as tf from transformers import AutoModelForCausalLM, AutoTokenizer from tensorflow.keras.models import Model from tensorflow.keras import backend as K from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint import numpy as np from typing import Optional, List, Tuple, Dict, Callable, Any from functools import lru_cache import asyncio import time import nest_asyncio # Allow nested async loops
logging.basicConfig( filename='app.log', level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s' )
nest_asyncio.apply()
class ModelInitializationError(Exception): """Raised when model initialization fails."""
def log_execution_time(func: Callable) -> Callable: """ A decorator that logs the execution time of the function.
:param func: The function to be wrapped.
:return: Wrapped function with execution time logging.
"""
async def wrapper(*args, **kwargs):
start_time = time.time()
result = await func(*args, **kwargs)
end_time = time.time()
logging.info(f"Executed {func.__name__} in {end_time - start_time:.2f} seconds.")
return result
return wrapper
class AGISystemSTEM: def init(self, model_loader: Optional[Callable] = None) -> None: """ Initializes the AGI system.
:param model_loader: Optional function for loading models, useful for dependency injection.
"""
self.memory: Dict[str, Any] = {}
self.models: Dict[str, Any] = {}
self.device = self._detect_device()
self.model_loader = model_loader if model_loader else self._default_model_loader
self.model_cache = {}
@lru_cache(maxsize=5)
@log_execution_time
async def load_model(self, model_name: str, model_class: str) -> None:
"""
Asynchronously loads a model.
:param model_name: Name of the model to load.
:param model_class: Class of the model (e.g., nlp_v1).
"""
if model_class in self.models:
logging.info(f"{model_class} already loaded.")
return
try:
start_time = time.time()
self.models[model_class] = await asyncio.to_thread(
self.model_loader, model_name, model_class
)
logging.info(f"{model_class} loaded successfully in {time.time() - start_time:.2f} seconds.")
except ModelInitializationError as e:
logging.error(f"Model load failed: {str(e)}")
except Exception as e:
logging.error(f"Unexpected error while loading model: {str(e)}")
def _create_dense_model(
self, input_shape: Tuple[int], model_name: str, num_classes: int
) -> Optional[Model]:
"""
Creates a dense neural network model.
:param input_shape: Input shape of the model.
:param model_name: Name of the model.
:param num_classes: Number of classes for the model.
:return: The created model or None if creation fails.
"""
try:
with tf.device(self.device):
model = tf.keras.Sequential(
[
tf.keras.layers.Dense(128, activation="relu", input_shape=input_shape),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(num_classes, activation="softmax" if num_classes > 1 else "sigmoid"),
]
)
loss = "categorical_crossentropy" if num_classes > 1 else "binary_crossentropy"
model.compile(
optimizer="adam",
loss=loss,
metrics=["accuracy", tf.keras.metrics.Precision(), tf.keras.metrics.Recall()],
)
logging.info(f"{model_name} model created successfully.")
return model
except tf.errors.ResourceExhaustedError:
logging.error(f"Model creation failed due to insufficient memory on {self.device}.")
return None
except Exception as e:
logging.error(f"Error creating {model_name} model: {str(e)}")
return None
def _detect_device(self) -> str:
"""Detects the available device (GPU or CPU)."""
return "/GPU:0" if tf.config.list_physical_devices('GPU') else "/CPU:0"
def _default_model_loader(self, model_name: str, model_class: str) -> Any:
"""Default model loading function."""
try:
if model_class == "nlp_v1":
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token # Add pad token
model = AutoModelForCausalLM.from_pretrained(model_name)
return {"tokenizer": tokenizer, "model": model}
else:
raise ModelInitializationError(f"Unknown model class: {model_class}")
except Exception as e:
logging.error(f"Error loading model {model_name}: {str(e)}")
raise ModelInitializationError(f"Failed to load model {model_name}")
def save_model(self, model: Model, model_name: str) -> None:
"""
Saves a TensorFlow model.
:param model: The Keras model to save.
:param model_name: The file name for saving the model.
"""
try:
model.save(f'{model_name}.h5')
logging.info(f"Model {model_name} saved successfully.")
except Exception as e:
logging.error(f"Failed to save model {model_name}: {str(e)}")
def load_trained_model(self, model_name: str) -> Optional[Model]:
"""
Loads a previously saved TensorFlow model.
:param model_name: The name of the model file to load.
:return: The loaded model.
"""
try:
model = tf.keras.models.load_model(f'{model_name}.h5')
logging.info(f"Model {model_name} loaded successfully.")
return model
except Exception as e:
logging.error(f"Failed to load model {model_name}: {str(e)}")
return None
async def main(): agi_system = AGISystemSTEM() await agi_system.load_model("Salesforce/codegen-350M-multi", "nlp_v1")
if name == "main": asyncio.run(main())
from transformers import pipeline
nlp_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
context = """ Newton's second law of motion states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. """ question = "What does Newton's second law of motion state?"
result = nlp_model(question=question, context=context) print(result)
from z3 import *
x = Int('x') y = Int('y')
solver = Solver()
solver.add(x + y > 5) solver.add(x - y < 2)
if solver.check() == sat: print("Solution found:") print(solver.model()) else: print("No solution.")
import sympy as sp
x, y = sp.symbols('x y')
f = x**2 + 2*y
df_dx = sp.diff(f, x) print(f"Derivative with respect to x: {df_dx}")
equation = sp.Eq(f, 0) solutions = sp.solve(equation, x) print(f"Solutions: {solutions}")
import torch import torch.nn as nn import torch.optim as optim
class SimpleNN(nn.Module): def init(self): super(SimpleNN, self).init() self.fc1 = nn.Linear(10, 50) self.fc2 = nn.Linear(50, 10) self.fc3 = nn.Linear(10, 1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
net = SimpleNN() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.001)
input_data = torch.randn(10) target = torch.tensor([1.0])
optimizer.zero_grad() output = net(input_data) loss = criterion(output, target) loss.backward() optimizer.step()
print(f"Loss: {loss.item()}")
import networkx as nx
G = nx.Graph()
G.add_node("Force", category="Physics concept") G.add_node("Newton's Second Law", category="Law") G.add_edge("Force", "Newton's Second Law", relationship="Defined by")
print(G.nodes(data=True)) print(G.edges(data=True))
import pybullet as p import time
physicsClient = p.connect(p.GUI)
p.loadURDF("plane.urdf") cubeId = p.loadURDF("r2d2.urdf", [0, 0, 1])
for i in range(1000): p.stepSimulation() time.sleep(1./240.)
p.disconnect()
pip install transformers tensorflow numpy loguru nest_asyncio z3-solver pybullet