Skip to content

OneFineStarstuff/Onefinebot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

import logging import tensorflow as tf from transformers import AutoModelForCausalLM, AutoTokenizer from tensorflow.keras.models import Model from tensorflow.keras import backend as K from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint import numpy as np from typing import Optional, List, Tuple, Dict, Callable, Any from functools import lru_cache import asyncio import time import nest_asyncio # Allow nested async loops

Set up logging

logging.basicConfig( filename='app.log', level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s' )

Apply the workaround for nested event loops

nest_asyncio.apply()

class ModelInitializationError(Exception): """Raised when model initialization fails."""

def log_execution_time(func: Callable) -> Callable: """ A decorator that logs the execution time of the function.

:param func: The function to be wrapped.
:return: Wrapped function with execution time logging.
"""
async def wrapper(*args, **kwargs):
    start_time = time.time()
    result = await func(*args, **kwargs)
    end_time = time.time()
    logging.info(f"Executed {func.__name__} in {end_time - start_time:.2f} seconds.")
    return result
return wrapper

class AGISystemSTEM: def init(self, model_loader: Optional[Callable] = None) -> None: """ Initializes the AGI system.

    :param model_loader: Optional function for loading models, useful for dependency injection.
    """
    self.memory: Dict[str, Any] = {}
    self.models: Dict[str, Any] = {}
    self.device = self._detect_device()
    self.model_loader = model_loader if model_loader else self._default_model_loader
    self.model_cache = {}

@lru_cache(maxsize=5)
@log_execution_time
async def load_model(self, model_name: str, model_class: str) -> None:
    """
    Asynchronously loads a model.

    :param model_name: Name of the model to load.
    :param model_class: Class of the model (e.g., nlp_v1).
    """
    if model_class in self.models:
        logging.info(f"{model_class} already loaded.")
        return
    try:
        start_time = time.time()
        self.models[model_class] = await asyncio.to_thread(
            self.model_loader, model_name, model_class
        )
        logging.info(f"{model_class} loaded successfully in {time.time() - start_time:.2f} seconds.")
    except ModelInitializationError as e:
        logging.error(f"Model load failed: {str(e)}")
    except Exception as e:
        logging.error(f"Unexpected error while loading model: {str(e)}")

def _create_dense_model(
    self, input_shape: Tuple[int], model_name: str, num_classes: int
) -> Optional[Model]:
    """
    Creates a dense neural network model.

    :param input_shape: Input shape of the model.
    :param model_name: Name of the model.
    :param num_classes: Number of classes for the model.
    :return: The created model or None if creation fails.
    """
    try:
        with tf.device(self.device):
            model = tf.keras.Sequential(
                [
                    tf.keras.layers.Dense(128, activation="relu", input_shape=input_shape),
                    tf.keras.layers.Dense(64, activation="relu"),
                    tf.keras.layers.Dense(num_classes, activation="softmax" if num_classes > 1 else "sigmoid"),
                ]
            )
            loss = "categorical_crossentropy" if num_classes > 1 else "binary_crossentropy"
            model.compile(
                optimizer="adam",
                loss=loss,
                metrics=["accuracy", tf.keras.metrics.Precision(), tf.keras.metrics.Recall()],
            )
            logging.info(f"{model_name} model created successfully.")
            return model
    except tf.errors.ResourceExhaustedError:
        logging.error(f"Model creation failed due to insufficient memory on {self.device}.")
        return None
    except Exception as e:
        logging.error(f"Error creating {model_name} model: {str(e)}")
        return None

def _detect_device(self) -> str:
    """Detects the available device (GPU or CPU)."""
    return "/GPU:0" if tf.config.list_physical_devices('GPU') else "/CPU:0"

def _default_model_loader(self, model_name: str, model_class: str) -> Any:
    """Default model loading function."""
    try:
        if model_class == "nlp_v1":
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            tokenizer.pad_token = tokenizer.eos_token  # Add pad token
            model = AutoModelForCausalLM.from_pretrained(model_name)
            return {"tokenizer": tokenizer, "model": model}
        else:
            raise ModelInitializationError(f"Unknown model class: {model_class}")
    except Exception as e:
        logging.error(f"Error loading model {model_name}: {str(e)}")
        raise ModelInitializationError(f"Failed to load model {model_name}")

def save_model(self, model: Model, model_name: str) -> None:
    """
    Saves a TensorFlow model.

    :param model: The Keras model to save.
    :param model_name: The file name for saving the model.
    """
    try:
        model.save(f'{model_name}.h5')
        logging.info(f"Model {model_name} saved successfully.")
    except Exception as e:
        logging.error(f"Failed to save model {model_name}: {str(e)}")

def load_trained_model(self, model_name: str) -> Optional[Model]:
    """
    Loads a previously saved TensorFlow model.

    :param model_name: The name of the model file to load.
    :return: The loaded model.
    """
    try:
        model = tf.keras.models.load_model(f'{model_name}.h5')
        logging.info(f"Model {model_name} loaded successfully.")
        return model
    except Exception as e:
        logging.error(f"Failed to load model {model_name}: {str(e)}")
        return None

Example usage

async def main(): agi_system = AGISystemSTEM() await agi_system.load_model("Salesforce/codegen-350M-multi", "nlp_v1")

Run the example

if name == "main": asyncio.run(main())

from transformers import pipeline

Load a pre-trained model (can be fine-tuned for STEM-specific tasks)

nlp_model = pipeline("question-answering", model="deepset/roberta-base-squad2")

context = """ Newton's second law of motion states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. """ question = "What does Newton's second law of motion state?"

result = nlp_model(question=question, context=context) print(result)

from z3 import *

Define variables

x = Int('x') y = Int('y')

Create a solver

solver = Solver()

Add some constraints

solver.add(x + y > 5) solver.add(x - y < 2)

Check if solution exists

if solver.check() == sat: print("Solution found:") print(solver.model()) else: print("No solution.")

import sympy as sp

Define symbolic variables

x, y = sp.symbols('x y')

Define a function

f = x**2 + 2*y

Compute its derivative w.r.t. x

df_dx = sp.diff(f, x) print(f"Derivative with respect to x: {df_dx}")

Solve an equation

equation = sp.Eq(f, 0) solutions = sp.solve(equation, x) print(f"Solutions: {solutions}")

import torch import torch.nn as nn import torch.optim as optim

Define a simple feedforward neural network

class SimpleNN(nn.Module): def init(self): super(SimpleNN, self).init() self.fc1 = nn.Linear(10, 50) self.fc2 = nn.Linear(50, 10) self.fc3 = nn.Linear(10, 1)

def forward(self, x):
    x = torch.relu(self.fc1(x))
    x = torch.relu(self.fc2(x))
    x = self.fc3(x)
    return x

Initialize the network, loss function, and optimizer

net = SimpleNN() criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.001)

Dummy input and target

input_data = torch.randn(10) target = torch.tensor([1.0])

Training step

optimizer.zero_grad() output = net(input_data) loss = criterion(output, target) loss.backward() optimizer.step()

print(f"Loss: {loss.item()}")

import networkx as nx

Create a graph to represent knowledge

G = nx.Graph()

Add nodes (concepts) and edges (relationships)

G.add_node("Force", category="Physics concept") G.add_node("Newton's Second Law", category="Law") G.add_edge("Force", "Newton's Second Law", relationship="Defined by")

Visualize the graph structure

print(G.nodes(data=True)) print(G.edges(data=True))

import pybullet as p import time

Connect to PyBullet

physicsClient = p.connect(p.GUI)

Load a plane and a cube

p.loadURDF("plane.urdf") cubeId = p.loadURDF("r2d2.urdf", [0, 0, 1])

Run simulation

for i in range(1000): p.stepSimulation() time.sleep(1./240.)

Disconnect

p.disconnect()

pip install transformers tensorflow numpy loguru nest_asyncio z3-solver pybullet

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published