Skip to content
@TuringLang

The Turing Language

Bayesian inference with probabilistic programming

Turing.jl is a Julia library for general-purpose probabilistic programming. Turing allows the user to write models using the standard Julia syntax, and provides a wide range of Monte Carlo sampling and optimisation based inference methods for solving problems across probabilistic machine learning, Bayesian statistics and data science. Compared to other probabilistic programming languages, Turing specializes in modularity, and decouples the modelling language (i.e., the compiler) and inference methods. Turing's modular design and the high-level numerical language Julia make Turing remarkably extensible: new model families and inference methods can be easily added.

Current functionalities include:

Citing Turing.jl

If you use Turing for your research, please consider citing the following publication: Hong Ge, Kai Xu, and Zoubin Ghahramani: Turing: a language for flexible probabilistic inference. AISTATS 2018 pdf bibtex

Pinned Loading

  1. Turing.jl Public

    Bayesian inference with probabilistic programming.

    Julia 2.1k 223

  2. docs Public

    Documentation and tutorials for the Turing language

    Markdown 235 102

  3. DynamicPPL.jl Public

    Implementation of domain-specific language (DSL) for dynamic probabilistic programming

    Julia 194 32

  4. JuliaBUGS.jl Public

    A domain specific language (DSL) for probabilistic graphical models

    Julia 35 8

  5. AdvancedHMC.jl Public

    Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

    Jupyter Notebook 268 44

  6. Bijectors.jl Public

    Implementation of normalising flows and constrained random variable transformations

    Julia 231 35

Repositories

Showing 10 of 34 repositories
  • JuliaBUGS.jl Public

    A domain specific language (DSL) for probabilistic graphical models

    Julia 35 MIT 8 13 6 Updated Mar 9, 2025
  • DynamicPPL.jl Public

    Implementation of domain-specific language (DSL) for dynamic probabilistic programming

    Julia 194 MIT 32 66 (2 issues need help) 16 Updated Mar 9, 2025
  • Bijectors.jl Public

    Implementation of normalising flows and constrained random variable transformations

    Julia 231 MIT 35 47 5 Updated Mar 9, 2025
  • SSMProblems.jl Public

    State space programming

    Julia 1 MIT 1 23 7 Updated Mar 9, 2025
  • AbstractPPL.jl Public

    Common types and interfaces for probabilistic programming

    Julia 29 MIT 8 3 0 Updated Mar 9, 2025
  • AbstractMCMC.jl Public

    Abstract types and interfaces for Markov chain Monte Carlo methods

    Julia 90 MIT 19 23 0 Updated Mar 9, 2025
  • AdvancedHMC.jl Public

    Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

    Jupyter Notebook 268 MIT 44 46 7 Updated Mar 9, 2025
  • DistributionsAD.jl Public

    Automatic differentiation of Distributions using Tracker, Zygote, ForwardDiff and ReverseDiff

    Julia 151 MIT 31 27 (1 issue needs help) 1 Updated Mar 9, 2025
  • Julia 14 MIT 9 6 4 Updated Mar 9, 2025
  • MCMCChains.jl Public

    Types and utility functions for summarizing Markov chain Monte Carlo simulations

    Julia 271 28 39 7 Updated Mar 9, 2025

Top languages

Loading…

Most used topics

Loading…