A WebGPU Shading Language parser and reflection library for Typescript and Javascript.
wgsl_reflect can parse a WGSL shader and analyze its contents, providing information about the shader. It can determine the bind group layout of the shader, resource bindings, uniform buffers, the members of a uniform buffer, their names, types, sizes, offsets into the buffer.
From NPM
npm install wgsl_reflect
The wgsl_reflect.module.js file is a self-contained roll-up of the library that can be included in your project and imported with:
import { WgslReflect } from "wgsl_reflect/wgsl_reflect.module.js";
const reflect = new WgslReflect(shader_code);
// A collection of gathered reflection information about the shader.
class WgslReflect {
// All top-level uniform vars in the shader.
uniforms: Array<VariableInfo>;
// All top-level storage vars in the shader, including storage buffers and textures.
storage: Array<VariableInfo>;
// All top-level texture vars in the shader;
textures: Array<VariableInfo>;
// All top-level sampler vars in the shader.
samplers: Array<VariableInfo>;
// All top-level type aliases in the shader.
aliases: Array<AliasInfo>;
// All top-level overrides in the shader.
overrides: Array<OverrideInfo> = [];
// All top-level structs in the shader.
structs: Array<StructInfo>;
// All entry functions in the shader: vertex, fragment, and/or compute.
entry: EntryFunctions;
// All functions in the shader, including entry functions.
functions: Array<FunctionInfo>;
// Parse the given WGSL shader code, populating the info properties of this class.
constructor(shader?: string);
// Parse the given WGSL shader code, adding to the info properties of this class.
update(shader: string);
// Find a resource by its group and binding.
findResource(group: number, binding: number): VariableInfo | null;
// Get the bind groups used by the shader, bindGroups[group][binding].
getBindGroups(): Array<Array<VariableInfo>>;
}
// A variable can be a resource passed to the shader, of this type.
enum ResourceType {
Uniform, // Uniform buffer
Storage, // Storage buffer
Texture, // Texture
Sampler, // Sampler to sample a Texture
StorageTexture // StorageTexture
}
// Information about a resource variable. This will be a uniform buffer,
// storage buffer, texture, sampler, or storageTexture.
class VariableInfo {
// The name of the variable.
name: string;
// The type of the variable.
type: TypeInfo;
// The binding group of the variable.
group: number;
// The binding index of the variable.
binding: number;
// The resource type of the variable.
resourceType: ResourceType;
// The access mode of the variable, can be: "", "read", "write", or "read_write".
access: string;
// True if the type of the variable is an array.
get isArray(): boolean;
// True if the type of the variable is a struct.
get isStruct(): boolean;
// True if the type of the variable is a template.
get isTemplate(): boolean;
// Size of the data pointed to by the variable, in bytes.
get size(): number;
// The alignment size if the variable type is a struct, otherwise 0.
get align(): number;
// The list of members of the variable type if it's a struct, otherwise null.
get members(): Array<MemberInfo> | null;
// The format if the type is a template or array, otherwise null.
get format(): TypeInfo | null;
// The array size if it's an array, otherwise 0.
get count(): number;
// The array stride if it's an array, otherwise 0.
get stride(): number;
}
// Base class for variable types.
class TypeInfo {
// The name of the type declaration.
name: string;
// Size of the data used by this type, in bytes
size: number;
// True if this is an array type, can be cast to ArrayInfo.
get isArray(): boolean;
// True if this is a struct type, can be cast to StructInfo.
get isStruct(): boolean;
// True if this is a template type, can be cast to TemplateInfo.
get isTemplate(): boolean;
}
// Information about struct type declarations
class StructInfo extends TypeInfo {
// The list of members of the struct.
members: Array<MemberInfo>;
// The alignment, in bytes, for the structs data.
align: number;
// The line in the shader code the type declaration starts at.
startLine: number;
// The line in the shader code the type declaration ends at.
endLine: number;
// True if the struct is used by a uniform, storage, or directly or indirectly by an entry function.
inUse: boolean;
}
// Information about array type declarations
class ArrayInfo extends TypeInfo {
// The format for the data in the array
format: TypeInfo;
// The number of elements in the array
count: number;
// The stride, in bytes, of the array. This is the alignment of elements in the array data, including padding.
stride: number;
}
// Information about template type declarations
class TemplateInfo extends TypeInfo {
// The format type of the template
format: TypeInfo;
// Access mode of the template, which can be: "", "read", "write", or "read_write"
access: string;
}
// Information about a struct member declaration.
class MemberInfo {
// The name of the struct member.
name: string;
// The type of the struct member.
type: TypeInfo;
// The offset, in bytes, of the member from the start of the struct data.
offset: number;
// The size of the members data, in bytes.
size: number;
// True if the member type is an array and can be cast to ArrayInfo
get isArray(): boolean;
// True if the member type is a struct and can be cast to StructInfo.
get isStruct(): boolean;
// True if the member type is a template and can be cast to TemplateInfo.
get isTemplate(): boolean;
// If the member type is a struct, the alignment of the struct in bytes, otherwise 0.
get align(): number;
// If the member type is a struct, the members of the struct, otherwise null.
get members(): Array<MemberInfo> | null;
// If the member type is an array or template, the format of the type, otherwise null.
get format(): TypeInfo | null;
// If the member type is an array, the number of elements in the array, otherwise 0.
get count(): number;
// If the member type is an array, the stride of the array elements in bytes, otherwise 0.
get stride(): number;
}
// Information about type aliases declared in the shader.
class AliasInfo {
// The name of the alias type.
name: string;
// The information of the type being aliased.
type: TypeInfo;
}
// The lists of shader vertex, fragment, and/or compute entry functions.
class EntryFunctions {
// Any vertex entry points in the shader.
vertex: Array<FunctionInfo>;
// Any fragment entry points in the shader.
fragment: Array<FunctionInfo>;
// Any compute entry points in the shader.
compute: Array<FunctionInfo>;
}
// Information about a function in the shader.
class FunctionInfo {
// The name of the function.
name: string;
// If the function is an entry function, which stage is it for, either "vertex", "fragment", "compute", or null if none.
stage: string | null;
// The list of shader inputs used by the function, which includes vertex and index buffers.
inputs: Array<InputInfo>;
// The list of shader outputs updated by the function, such as inter-stage buffers.
outputs: Array<OutputInfo>;
// The arguments of the function.
arguments: Array<ArgumentInfo>;
// The return type of the function, or null if the function returns void.
returnType: TypeInfo | null;
// The resources used by the function, including uniform buffers, storage buffers, textures,
// samplers, and storage textures.
resources: Array<VariableInfo>;
// The line in the shader the function definition starts at.
startLine: number;
// The line in the shader the function definition ends at.
endLine: number;
// True if called directly or indirectly by an entry function.
inUse: boolean;
// All custom functions called directly by this function.
calls: Set<FunctionInfo>;
}
// Information about a shader inputs.
class InputInfo {
// The name of the input variable
name: string;
// The type of the input variable.
type: TypeInfo | null;
// The location type of the input.
locationType: string;
// The location index or built-in location name.
location: number | string;
// The interpolation mode of the binding.
interpolation: string | null;
}
// Information about a shader output.
class OutputInfo {
// The name of the output variable.
name: string;
// The type of the output variable.
type: TypeInfo | null;
// The location type of the output.
locationType: string;
// The location index or built-in location name.
location: number | string;
}
// Information about override constants in the shader.
class OverrideInfo {
// The name of the override constant.
name: string;
// The type of the override constant.
type: TypeInfo | null;
// A unique ID given to the override constant.
id: number;
}
// Information about a function argument.
class ArgumentInfo {
// Then ame of the argument variable.
name: string;
// The type of the argument variable.
type: TypeInfo;
}
Calculate the bind group information in the shader:
import { WgslReflect } from "./wgsl_reflect.module.js";
const shader = `
struct ViewUniforms {
viewProjection: mat4x4<f32>
}
struct ModelUniforms {
model: mat4x4<f32>,
color: vec4<f32>,
intensity: f32
}
@binding(0) @group(0) var<uniform> viewUniforms: ViewUniforms;
@binding(1) @group(0) var<uniform> modelUniforms: ModelUniforms;
@binding(2) @group(0) var u_sampler: sampler;
@binding(3) @group(0) var u_texture: texture_2d<f32>;
struct VertexInput {
@location(0) a_position: vec3<f32>,
@location(1) a_normal: vec3<f32>,
@location(2) a_color: vec4<f32>,
@location(3) a_uv: vec2<f32>
}
struct VertexOutput {
@builtin(position) Position: vec4<f32>,
@location(0) v_position: vec4<f32>,
@location(1) v_normal: vec3<f32>,
@location(2) v_color: vec4<f32>,
@location(3) v_uv: vec2<f32>
}
@vertex
fn main(input: VertexInput) -> VertexOutput {
var output: VertexOutput;
output.Position = viewUniforms.viewProjection * modelUniforms.model * vec4<f32>(input.a_position, 1.0);
output.v_position = output.Position;
output.v_normal = input.a_normal;
output.v_color = input.a_color * modelUniforms.color * modelUniforms.intensity;
output.v_uv = input.a_uv;
return output;
}`;
const reflect = new WgslReflect(shader);
console.log(reflect.functions.length); // 1
console.log(reflect.structs.length); // 4
console.log(reflect.uniforms.length); // 2
// Shader entry points
console.log(reflect.entry.vertex.length); // 1, there is 1 vertex entry function.
console.log(reflect.entry.fragment.length); // 0, there are no fragment entry functions.
console.log(reflect.entry.compute.length); // 0, there are no compute entry functions.
console.log(reflect.entry.vertex[0].name); // "main", the name of the vertex entry function.
console.log(reflect.entry.vertex[0].resources.length); // 2, main uses modelUniforms and viewUniforms resource bindings.
console.log(reflect.entry.vertex[0].resources[0].name); // viewUniforms
console.log(reflect.entry.vertex[0].resources[1].name); // modelUniforms
// Vertex shader inputs
console.log(reflect.entry.vertex[0].inputs.length); // 4, inputs to "main"
console.log(reflect.entry.vertex[0].inputs[0].name); // "a_position"
console.log(reflect.entry.vertex[0].inputs[0].location); // 0
console.log(reflect.entry.vertex[0].inputs[0].locationType); // "location" (can be "builtin")
console.log(reflect.entry.vertex[0].inputs[0].type.name); // "vec3"
console.log(reflect.entry.vertex[0].inputs[0].type.format.name); // "f32"
// Gather the bind groups used by the shader.
const groups = reflect.getBindGroups();
console.log(groups.length); // 1
console.log(groups[0].length); // 4, bindings in group(0)
console.log(groups[0][1].resourceType); // ResourceType.Uniform, the type of resource at group(0) binding(1)
console.log(groups[0][1].size); // 96, the size of the uniform buffer.
console.log(groups[0][1].members.length); // 3, members in ModelUniforms.
console.log(groups[0][1].members[0].name); // "model", the name of the first member in the uniform buffer.
console.log(groups[0][1].members[0].offset); // 0, the offset of 'model' in the uniform buffer.
console.log(groups[0][1].members[0].size); // 64, the size of 'model'.
console.log(groups[0][1].members[0].type.name); // "mat4x4", the type of 'model'.
console.log(groups[0][1].members[0].type.format.name); // "f32", the format of the mat4x4.
console.log(groups[0][2].resourceType); // ResourceType.Sampler
console.log(groups[0][3].resourceType); // ResourceType.Texture
console.log(groups[0][3].type.name); // "texture_2d"
console.log(groups[0][3].type.format.name); // "f32"
Calculate the member information for a uniform buffer block:
import { WgslReflect } from "./wgsl_reflect.module.js";
// WgslReflect can calculate the size and offset for members of a uniform buffer block.
const shader = `
struct A { // align(8) size(32)
u: f32, // offset(0) align(4) size(4)
v: f32, // offset(4) align(4) size(4)
w: vec2<f32>, // offset(8) align(8) size(8)
@size(16) x: f32 // offset(16) align(4) size(16)
}
struct B { // align(16) size(208)
a: vec2<f32>, // offset(0) align(8) size(8)
// -- implicit member alignment padding -- // offset(8) size(8)
b: vec3<f32>, // offset(16) align(16) size(12)
c: f32, // offset(28) align(4) size(4)
d: f32, // offset(32) align(4) size(4)
// -- implicit member alignment padding -- // offset(36) size(12)
@align(16) e: A, // offset(48) align(16) size(32)
f: vec3<f32>, // offset(80) align(16) size(12)
// -- implicit member alignment padding -- // offset(92) size(4)
g: @stride(32) array<A, 3>, // offset(96) align(8) size(96)
h: i32, // offset(192) align(4) size(4)
// -- implicit struct size padding -- // offset(196) size(12)
}
@group(0) @binding(0)
var<uniform> uniform_buffer: B;`;
const reflect = new WgslReflect(shader);
const u = reflect.uniforms[0];
console.log(u.size); // 208, the size of the uniform buffer in bytes
console.log(u.group); // 0
console.log(u.binding); // 0
console.log(u.members.length); // 8, members in B
console.log(u.members[0].name); // "a"
console.log(u.members[0].offset); // 0, the offset of 'a' in the buffer
console.log(u.members[0].size); // 8, the size of 'a' in bytes
console.log(u.members[0].type.name); // "vec2", the type of 'a'
console.log(u.members[0].type.format.name); // "f32", the format of the vec2.
console.log(u.members[4].name); // "e"
console.log(u.members[4].offset); // 48, the offset of 'e' in the buffer
console.log(u.members[4].size); // 32, the size of 'e' in the buffer