Skip to content

google/gemma_pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

74 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gemma in PyTorch

Gemma is a family of lightweight, state-of-the art open models built from research and technology used to create Google Gemini models. They include both text-only and multimodal decoder-only large language models, with open weights, pre-trained variants, and instruction-tuned variants. For more details, please check out the following links:

This is the official PyTorch implementation of Gemma models. We provide model and inference implementations using both PyTorch and PyTorch/XLA, and support running inference on CPU, GPU and TPU.

Updates

  • [March 12th, 2025 🔥] Support Gemma v3. You can find the checkpoints on Kaggle and Hugging Face

  • [June 26th, 2024] Support Gemma v2. You can find the checkpoints on Kaggle and Hugging Face

  • [April 9th, 2024] Support CodeGemma. You can find the checkpoints on Kaggle and Hugging Face

  • [April 5, 2024] Support Gemma v1.1. You can find the v1.1 checkpoints on Kaggle and Hugging Face.

Download Gemma model checkpoint

You can find the model checkpoints on Kaggle:

Alternatively, you can find the model checkpoints on the Hugging Face Hub here. To download the models, go the the model repository of the model of interest and click the Files and versions tab, and download the model and tokenizer files. For programmatic downloading, if you have huggingface_hub installed, you can also run:

huggingface-cli download google/gemma-3-4b-it-pytorch

The following model sizes are available:

  • Gemma 3:
    • Text only: 1b
    • Multimodal: 4b, 12b, 27b_v3
  • Gemma 2:
    • Text only: 2b-v2, 9b, 27b
  • Gemma:
    • Text only: 2b, 7b

Note that you can choose between the 1B, 4B, 12B, and 27B variants.

VARIANT=<1b, 2b, 2b-v2, 4b, 7b, 9b, 12b, 27b, 27b_v3>
CKPT_PATH=<Insert ckpt path here>

Try it free on Colab

Follow the steps at https://ai.google.dev/gemma/docs/pytorch_gemma.

Try it out with PyTorch

Prerequisite: make sure you have setup docker permission properly as a non-root user.

sudo usermod -aG docker $USER
newgrp docker

Build the docker image.

DOCKER_URI=gemma:${USER}

docker build -f docker/Dockerfile ./ -t ${DOCKER_URI}

Run Gemma inference on CPU.

NOTE: This is a multimodal example. Use a multimodal variant.

docker run -t --rm \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run_multimodal.py \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}" \
    # add `--quant` for the int8 quantized model.

Run Gemma inference on GPU.

NOTE: This is a multimodal example. Use a multimodal variant.

docker run -t --rm \
    --gpus all \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run_multimodal.py \
    --device=cuda \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}"
    # add `--quant` for the int8 quantized model.

Try It out with PyTorch/XLA

Build the docker image (CPU, TPU).

DOCKER_URI=gemma_xla:${USER}

docker build -f docker/xla.Dockerfile ./ -t ${DOCKER_URI}

Build the docker image (GPU).

DOCKER_URI=gemma_xla_gpu:${USER}

docker build -f docker/xla_gpu.Dockerfile ./ -t ${DOCKER_URI}

Run Gemma inference on CPU.

NOTE: This is a multimodal example. Use a multimodal variant.

docker run -t --rm \
    --shm-size 4gb \
    -e PJRT_DEVICE=CPU \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run_xla.py \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}" \
    # add `--quant` for the int8 quantized model.

Run Gemma inference on TPU.

Note: be sure to use the docker container built from xla.Dockerfile.

docker run -t --rm \
    --shm-size 4gb \
    -e PJRT_DEVICE=TPU \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run_xla.py \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}" \
    # add `--quant` for the int8 quantized model.

Run Gemma inference on GPU.

Note: be sure to use the docker container built from xla_gpu.Dockerfile.

docker run -t --rm --privileged \
    --shm-size=16g --net=host --gpus all \
    -e USE_CUDA=1 \
    -e PJRT_DEVICE=CUDA \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run_xla.py \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}" \
    # add `--quant` for the int8 quantized model.

Tokenizer Notes

99 unused tokens are reserved in the pretrained tokenizer model to assist with more efficient training/fine-tuning. Unused tokens are in the string format of <unused[0-97]> with token id range of [7-104].

"<unused0>": 7,
"<unused1>": 8,
"<unused2>": 9,
...
"<unused98>": 104,

Disclaimer

This is not an officially supported Google product.

About

The official PyTorch implementation of Google's Gemma models

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published