Just FYI, this repository isn't just README.md, it's also more than a thousand solutions here.
Leetcode imports modules as wildcards, so you don't have to specify module names. There are some exceptions:
- Single
bisect()
without a prefix triggersobject is not callable
, usebisect.bisect()
orbisect_left()
. - You have to specify
re.sub
becausesub
without a prefix isoperator.sub
. - Default
pow
is__builtins__['pow']
(supports up to 3 arguments, including the modulus), notmath.pow
.
For example, Leetcode header has import * from itertools
, so we use comb()
instead of itertools.comb()
:
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
return comb(m+n-2, n-1)
You can also use __import__('module').func
for unlisted modules (namely, numpy
, scipy
, and sortedcontainers
).
class Solution:
def checkStraightLine(self, p):
return __import__('numpy').linalg.matrix_rank([[1]+x for x in p])<3
Sometimes you can save on casting of the return type, e.g. Leetcode autoconverted keys and mixed types to lists.
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
return dict(Counter(nums).most_common(k))
It also automatically evaluated generators (stopped worked in Aug 2023, expected return type integer[]
):
class Solution:
def countBits(self, n: int) -> List[int]:
return map(int.bit_count,range(n+1))
You can also return linked list of values as ListNode('a,b,...')
. This one is really specific, but sometimes useful.
class Solution:
def addTwoNumbers(self, a: Optional[ListNode], b: Optional[ListNode]) -> Optional[ListNode]:
f=lambda n:n and n.val+10*f(n.next)or 0;return ListNode(','.join([*str(f(a)+f(b))][::-1]))
Leetcode also has serialize
and deserialize
functions for lists and trees:
class Solution:
def reverseList(self, h: Optional[ListNode]) -> Optional[ListNode]:
return h and h.deserialize(str(eval(h.serialize(h))[::-1]))
There is also has_sycle
function:
class Solution:
def hasCycle (self, h: Optional[ListNode]) -> bool:
return ListNode.has_cycle(h)
There are also _*_node_to_array
and _array_to_*_node
functions:
class Solution:
def isPalindrome(self, h: ListNode) -> bool:
return(s:=type(h)._list_node_to_array(h))==s[::-1]
You can also dump the entire preprocessed solution file to check all the imports for yourself (see gist):
with open(__file__, 'rt') as f:
print(f.read())
The solution driver code writes all results to the user.out
file, so we can use it like this:
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
from zlib import decompress
from base64 import b64decode
open('user.out', 'wb').write(decompress(b64decode('eJzdkMEVwCAIQ++dggFyEKi2zuLr/mtItZb63KAc\
kpfwuVAYFK6tCIjNPH1KncodJMuBTqWTYUGe89hNX1Kd/K2Nh1iM3mYbkMlpIaFrvvcCaVwCH+YB3FSHVu5xXDc='))),exit(0)
There is no approved method to get all the test cases for problems in LeetCode. You can, however, leverage the fact that LeetCode reveals the test case that causes your code to fail. The solution above is not very reliable, because tests and environment may change, but it's pretty fast.
You can explore the sandbox using shell commands, e.g. (see gist):
import subprocess
print(subprocess.run(["ls", "-la", "/"]))
You can set your own execution time using atexit
(worked in March 2025):
__import__('atexit').register(lambda: open("display_runtime.txt", "w").write("0")) # 0..2147483647
Some leetcode problems may be solved at the function declaration level.
class Solution:searchInsert=bisect_left
class Solution:permute=permutations
class Solution:sortArray=sorted
class Solution:bulbSwitch=isqrt
class Solution:search=contains
class Solution:myPow=pow
Note that it only works for the built-in functions, they can omit self
parameter.
It's a built-in CPython feature:
You cannot use your own function like that, without skipping the first argument.
class Solution:reverseWords=lambda _,s:' '.join(w[::-1]for w in s.split())
It's not necessarily shorter, because lambdas can't use semicolons.
In some cases you don't even have to write "class Solution:", e.g:
Codec=TreeNode
Let's consider function declaration is zero lines.
class Solution:
def accountBalanceAfterPurchase(self, x: int) -> int:
return(104-x)//10*10
class Solution:
def majorityElement(self, n: List[int]) -> int:
return mode(n)
class Solution:
def numberOfMatches(self, n: int) -> int:
return~-n
class Solution:
def stoneGame(self, piles: List[int]) -> bool:
return 1
You can also write:
class Solution:stoneGame=truth
class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
0
This is 1-symbol solution. Notice no return operator here, can be pass
, as function returns None. You can also do:
class Solution:isStrictlyPalindromic=not_
Fictitious (anonymous) lambdas may be nested. E.g. you can use lambdas as parameters:
(lambda a,b,c: code)(a,b,c)
becomes(lambda a,b,c: code)(lambda a: code, lamda b: code, lambda c: code)
You can't unpack lambda tuples in Python 3 since PEP 3113, however, if your lambda is flat, there is an upgrade path:
lambda (x, y): x + y
in Python 2 becomeslambda xy:(lambda x,y: x+y)(*xy)
in Python 3.
You can also unpack multiple tuples as lambda xy,ab:(lambda x,y,a,b: x+y+a+b)(*(xy+ab))
.
class Solution:
def countVowelPermutation(self, n: int) -> int:
return sum(reduce(lambda x,_:(lambda a,e,i,o,u:(e+i+u,a+i,e+o,i,i+o))(*x),[0]*(n-1),[1]*5))
%(10**9+7)
Sometimes you can unpack tuples with starmap:
class Solution:
def lenLongestFibSubseq(self, n: List[int]) -> int:
s={*n};return(0,t:=max(starmap(f:=lambda a,b,c=2:s&{a+b}and f(b,a+b,c+1)or c,
combinations(n,2))))[t>2]
Generator expressions (x for y in z)
are memory efficient since they only require memory for
the one value they yield. If you don't care about memory you can use square brackets to make it a list comprehension that automatically runs the loop.
You can also exhaust a generator using all()
, any()
or sum()
, depending on the return values.
You can also save a few chars using [*g]
syntax instead of list(g)
where g is a generator function.
Generator length len(list(g))
can be calculated in constant memory as sum(1 for _ in g)
.
Generator expansion [*g]
may use a traling comma *g,
in the initialization section (1 character shorter).
class Solution:
def maxAbsoluteSum(self, a: List[int]) -> int:
a=[*accumulate([0]+a)];return max(a)-min(a)
class Solution:
def maxAbsoluteSum(self, a: List[int]) -> int:
a=*accumulate([0]+a),;return max(a)-min(a)
Generators provide an easy, built-in way to create instances of Iterators.
Iterators are objects that have an __iter__
and a __next__
method.
The iter()
method returns an iterator for the given argument.
Each access iterator advances one step.
May be useful, e.g. this solution would not work without converting a string to an iterator:
class Solution:
def appendCharacters(self, s: str, t: str) -> int:
s=iter(s);return sum(c not in s for c in t)
You can also use iter()
to split a list into chunks. The [iter(s)]*n
trick breaks a list into pieces of size n:
class Solution:
def minChanges(self, s: str) -> int:
return sum(map(ne,s[::2],s[1::2]))
class Solution:
def minChanges(self, s: str) -> int:
return sum(map(ne,s:=iter(s),s))
class Solution:
def minChanges(self, s: str) -> int:
return sum(map(ne,*[iter(s)]*2))
Starting from python version 3.7 dictionary order is guaranteed to be insertion order.
- Implementation proposal: https://mail.python.org/pipermail/python-dev/2012-December/123028.html
A simple Hash Table consists of key-value pair arranged in pseudo random order based on the calculations from Hash Function. The traditional implementation of python dict used a sparse array which had lots of unused spaces in between. The new implementation uses a combination of dense array and sparse array, the dense array stores the key-value pair while the sparse array stores the indices to this dense array.
- Faster iteration (up to 2x faster, https://mail.python.org/pipermail/python-dev/2017-December/151283.html)
- Order is maintained on iterating and converting a dictionary to other data type.
- Less memory required for both usage and creation of dictionaries.
Counters (collections.Counter()
) can be updated, similar to dict.update()
, it's much faster than a sum of counters.
E.g. c[i]+=1
is equivalent to c.update([i])
, c[i]-=1
is c.update({i:-1})
.
To delete a key you can use the .pop
method (same as del
), it's shorter than popitem()
.
Note that c.update({i:x})
and setitem(c,i,c[i]+x)
behaves differently. If x is negative and count becomes <=0
, the key is removed.
You can also remove zero and negative values manually (there is an the official way, see documentation):
c = Counter({1:1,2:0,3:-1}); print(c:=+c) #{1: 1}, same as c += Counter()
Since python 3.7, as a dict subclass, Counter inherited the capability to remember insertion order.
class Solution:
def reductionOperations(self, n: List[int]) -> int:
return sum(i*v for i,(_,v)in enumerate(sorted(Counter(n).items())))
class Solution:
def reductionOperations(self, n: List[int]) -> int:
return sum(i*v for i,v in enumerate(Counter(sorted(n)).values()))
Since Python 3.10 you can use total()
to compute sum of the counts.
class Solution:
def minSteps(self, s: str, t: str) -> int:
return sum((Counter(s)-Counter(t)).values())
class Solution:
def minSteps(self, s: str, t: str) -> int:
return(Counter(s)-Counter(t)).total()
Sometimes you can replace Counter
with set
and count
(and it's even faster):
class Solution:
def canConstruct(self, s: str, k: int) -> bool:
return sum(x&1 for x in Counter(s).values())<=k<=len(s)
class Solution:
def canConstruct(self, s: str, k: int) -> bool:
return sum(1&s.count(x)for x in set(s))<=k<=len(s)
class Solution:
def minimumLength(self, s: str) -> int:
return sum(2-x%2 for x in Counter(s).values())
class Solution:
def minimumLength(self, s: str) -> int:
return sum(2-s.count(x)%2 for x in set(s))
Unlike dict
, python set
does NOT maintain insertion order. There are modules that implements ordered set.
- sortedcontainers -
SortedList
,SortedDict
,SortedSet
(maintains sorted order). - sortedcollections -
ValueSortedDict
,ItemSortedDict
,OrderedDict
,OrderedSet
(maintains insertion order).
You can use SortedList
in a bunch of problems instead of a heap.
class Solution:
def minimumDeviation(self, nums: List[int]) -> int:
r,q = inf,[]
for a in nums:
heappush(q,a%2 and -a*2 or -a)
m = -max(q)
while len(q) == len(nums):
a = -heappop(q)
r = min(r, a - m)
if a%2==0:
m = min(m, a//2)
heappush(q, -a//2)
return r
from sortedcontainers import SortedList
class Solution:
def minimumDeviation(self, nums: List[int]) -> int:
s,r = SortedList(i*2 if i & 1 else i for i in nums),inf
while True:
r = min(r,s[-1]-s[0])
if 1&s[-1]: break
s.add(s.pop()//2)
return r
class Solution:
def minimumDeviation(self, a: List[int]) -> int:
s,r=__import__('sortedcontainers').SortedList(i*(1+i%2)for i in a),inf;
return next(r for _ in count()if[r:=min(r,s[-1]-s[0])]and 1&s[-1]or s.add(s.pop()//2))
The controversial walrus operator (:=
) added in Python 3.8 (PEP-572
that resulted in Guido's resign),
can be used to define or update a variable or a function (mostly used for recursive functions).
You can define and call a recursive function in a single line with Y-combinator, e.g.:
return (lambda y,x:y(y,x))(lambda f,x:1 if x==0 else x*f(f,x-1),5)
But the walrus operator syntax is much more concise:
return (f:=lambda x:1 if x==0 else x*f(x-1))(5)
Many oneliners would be impossible to do without it (or rather, very hard, with nested lambdas).
Sometimes you don't even need extra brackets, e.g. in map(f:=x,y)
or next(g,f:=x)
so it may be shorter than operators separated by semicolons.
class Solution:
def numOfMinutes(self, n: int, h: int, m: List[int], t: List[int]) -> int:
return max(map(f:=cache(lambda i:~i and t[i]+f(m[i])),m))
class Solution(object):
def guessNumber(self, n: int) -> int:
l,r = 1, n
while l <= r:
m = (l + r) // 2
res = guess(m)
if res == 0:
return m
elif res > 0:
l = m + 1
else:
r = m - 1
return 0
class Solution:
def guessNumber(self, n: int) -> int:
return (f:=lambda l,h:h if l+1==h else f(m,h) if guess(m:=(l+h)//2)>0 else f(l,m))(0,n)
class Solution:
def reverse(self, x: int) -> int:
r, x = 0, abs(x)
while x:
r = r*10 + x%10
x //= 10
return ((x>0)-(x<0))*min(2**31, r)
class Solution:
def reverse(self, x: int) -> int:
return ((x>0)-(x<0))*min(2**31,(f:=lambda r,x:f(r*10 + x%10, x//10) if x else r)(0,abs(x)))
class Solution:
def topKFrequent(self, words: List[str], k: int) -> List[str]:
return nsmallest(k,(f:=Counter(words)).keys(),lambda x:(-f[x],x))
You can use __setattr__
for dictionaries or __setitem__
for lists (both member functions return None
).
You can also use setattr
or setitem
functions from the operator
module,
e.g. c[x]=1
is the same as setitem(c,x,1)
.
class Solution:
def addOneRow(self, root: TreeNode, v: int, d: int, isLeft: bool = True) -> TreeNode:
if d == 1:
return TreeNode(v, root if isLeft else None, root if not isLeft else None)
if not root:
return None
root.left = self.addOneRow(root.left, v, d - 1, True)
root.right = self.addOneRow(root.right, v, d - 1, False)
return root
class Solution:
def addOneRow(self, root: TreeNode, v: int, d: int, isLeft: bool = True) -> TreeNode:
return TreeNode(v, root if isLeft else None, root if not isLeft else None) if d==1 else \
setattr(root,'left', self.addOneRow(root.left, v, d - 1, True)) or \
setattr(root,'right', self.addOneRow(root.right, v, d - 1, False)) or root if root else None
class Solution(object):
def deleteMiddle(self, head):
def f(a, b):
if not b:
return a.next
a.next = f(a.next, b.next.next) if b.next else f(a.next, b.next)
return a
return f(head, head.next)
class Solution(object):
def deleteMiddle(self, head):
return (f:=lambda a,b:setattr(a,'next',f(a.next, b.next.next) if b.next
else f(a.next, b.next)) or a if b else a.next)(head, head.next)
Note that setitem
also supports slices:
# TLE, too slow
class Solution:
def countPrimes(self, n):
g=range(2,n);return len(reduce(lambda r,x:r-set(range(x**2,n,x))if x in r else r,g,set(g)))
class Solution:
def countPrimes(self, n):
a = [0,0]+[1]*(n-2)
for i in range(2,int(n**0.5)+1):
if a[i]:
a[i*i:n:i] = [0]*len(a[i*i:n:i])
return sum(a)
class Solution:
def countPrimes(self, n):
return sum(reduce(lambda a,i:a[i] and setitem(a,slice(i*i,n,i),[0]*len(a[i*i:n:i])) or a,
range(2,int(n**0.5)+1), [0,0]+[1]*(n-2)))
You can also calculate primes like this:
class Solution:
def primeSubOperation(self, a: List[int]) -> bool:
m,p=1,[0]+[i for i in range(2,999)if all(i%j for j in range(2,i))];\
return all(m<(m:=x-p[bisect_right(p,x-m)-1]+1)for x in a)
Note slices can extend the list implicitly, e.g.:
a = [0,1,2]
a[3:4] = [3] # the result is [0,1,2,3]
Be careful though, slicing doesn't extend list beyond the slice size:
a = [0,1]
a[3:4] = [3,4] # the result is [0,1,3,4], NOT [0,1,?,3,4] (!)
Examples:
class Solution:
def longestObstacleCourseAtEachPosition(self, o: List[int]) -> List[int]:
d = []
for e in o:
i = bisect_right(d,e)
if i==len(d):
d.append(0)
d[i] = e
yield i+1
class Solution:
def longestObstacleCourseAtEachPosition(self, o: List[int]) -> List[int]:
d = []
for e in o:
i = bisect_right(d,e)
d[i:i+1] = [e]
yield i+1
class Solution:
def longestObstacleCourseAtEachPosition(self, o: List[int]) -> List[int]:
d=[];return[setitem(d,slice(i:=bisect_right(d,e),i+1),[e])or i+1for e in o]
Sometimes exec
is shorter than setitem
.
ParkingSystem=type('',(),{'__init__':lambda s,a,b,c:setattr(s,'p',[0,a,b,c]),'addCar':lambda s,t:\
setitem(s.p,t,s.p[t]-1)or s.p[t]>=0})
ParkingSystem=type('',(),{'__init__':lambda s,a,b,c:setattr(s,'p',[0,a,b,c]),'addCar':lambda s,t:\
exec('s.p[t]-=1')or s.p[t]>=0})
You can write a class or a subclass implementation in one line.
MyHashSet=type('',(set,),{'remove':set.discard,'contains':set.__contains__})
MyStack=type('',(list,),{'push':list.append,'top':lambda s:s[-1],'empty':lambda s:not s})
ProductOfNumbers=type('',(list,),{'__init__':lambda s:list.__init__(s,[1]),'add':lambda s,x:
s.append(s[-1]*x)if x else s.__init__(),'getProduct':lambda s,k:s[k:]and s[-1]//s[~k]or 0})
Counter subclassing fails since Python 3.7, type() doesn't support MRO entry resolution; use types.new_class()
.
When you try to use types.new_class()
it says TypeError: .__init_subclass__() takes no keyword arguments')
.
This can be avoided by creating the class first, then adding the methods to it separately, e.g.:
с=Counter;с.insert=lambda s,x:s.update({x})or s[x]<2;с.remove=lambda s,x:s.pop(x,0);
с.getRandom=lambda s:choice([*s]);RandomizedSet=с
Sometimes (not always) you can skip __init__
and use static attributes.
UndergroundSystem=type('',(),{'h':{},'m':{},'checkIn':lambda s,i,v,t:setitem(s.m,i,(v,t)),
'checkOut':lambda s,i,d,w:(v:=s.m[i][0])and setitem(s.h,(v,d),[*map(sum,zip(s.h.pop((v,d),
(0,0)),(w-s.m[i][1],1)))]),'getAverageTime':lambda s,v,d:truediv(*s.h[v,d])})
Binary search can be replaced by the built-in bisect
methods.
Custom binary search can use either an item getter object or a key function (since Python 3.10).
Stock bisect implementation is in bisect.py (read it please).
class Solution:
def guessNumber(self, n: int) -> int:
l,r = 1, n
while l <= r:
m = (l + r) // 2
res = guess(m)
if res == 0:
return m
elif res > 0:
l = m + 1
else:
r = m - 1
return 0
class Solution:
def guessNumber(self, n: int) -> int:
return bisect_left(type('',(),{'__getitem__':lambda _,i: -guess(i)})(), 0, 1, n)
class Solution:
def guessNumber(self, n: int) -> int:
return bisect_left(range(n), 0, key=lambda num: -guess(num))
Note that built-in methods don't support negative left margin, so you have to subtract it from the result:
class Solution:
def kthSmallestProduct(self, a: List[int], b: List[int], k: int) -> int:
f=lambda x:sum(bisect_right(b,x//y)if y>0 else len(b)-bisect_left(b,ceil(x/y))if y<0 else
(x>=0)*len(b)for y in a)
l,r = -10**10-1, 10**10+1
while l < r:
m = (l + r)//2
if f(m) >= k:
r = m
else:
l = m + 1
return l
class Solution:
def kthSmallestProduct(self, a: List[int], b: List[int], k: int) -> int:
f=lambda x:sum(bisect_right(b,x//y)if y>0 else len(b)-bisect_left(b,ceil(x/y))if y<0 else
(x>=0)*len(b)for y in a)
return bisect_left(range(2*(r:=10**10)),k,key=lambda i:f(i-r))-r
While loops are not very oneliner-friendly. You can use next()
function with an endless count()
generator.
Note that the default parameter runs first so you can use it for the startup code (it's not recalculated in the end).
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
seen = {}
for i,x in enumerate(nums):
if target-x in seen:
return seen[target-x], i
seen[x] = i
return False
class Solution:
def twoSum(self, n: List[int], t: int) -> List[int]:
return next(((m[t-x],i)for i,x in enumerate(n)if t-x in m or setitem(m,x,i)),m:={})
class Solution:
def breakPalindrome(self, s: str) -> str:
for i in range(len(s) // 2):
if s[i] != 'a':
return s[:i] + 'a' + s[i + 1:]
return s[:-1] + 'b' if s[:-1] else ''
class Solution:
def breakPalindrome(self, s: str) -> str:
return next((s[:i]+'a'+s[i+1:]for i in range(len(s)//2)if s[i]!='a'),s[:-1]and s[:-1]+'b')
class Solution:
def isPossible(self, target: List[int]) -> bool:
s = sum(target)
q = [-a for a in target]
heapify(q)
while True:
x = -heappop(q)
if x==1:
return True
if s==x:
return False
d = 1 + (x-1) % (s-x)
if x==d:
return False
s = s - x + d
heappush(q, -d)
class Solution:
def isPossible(self, target: List[int]) -> bool:
return (s:=sum(target),q:=[-a for a in target],heapify(q)) and next((x==1 for _ in count()
if (x:=-heappop(q))==1 or s==x or (d:=1+(x-1)%(s-x))==x or not (s:=s-x+d,heappush(q,-d))),1)
You can also use takewhile()
, it's also a generator, so you need to expand it (e.g. with repeat(0)
).
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
r, d = [], deque()
for i, n in enumerate(nums):
while d and n>=nums[d[-1]]:
d.pop()
d.append(i)
if d[0] == i-k:
d.popleft()
r.append(nums[d[0]])
return r[k-1:]
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
return (d:=deque()) or reduce(lambda r,p:(
any(takewhile(lambda _:d and p[1]>=nums[d[-1]] and d.pop(), repeat(0))),
d.append(p[0]), d[0]==p[0]-k and d.popleft(), r.append(nums[d[0]])) and r,
enumerate(nums), [])[k-1:]
You could also try any()
or all()
as a while loop instead of next()
, it may be shorter.
You can assure that expression never returns None
, using []
([None]
evaluates to True
).
class Solution:
def lastStoneWeight(self, stones: List[int]) -> int:
stones.sort()
while len(stones) > 1:
insort(stones,stones.pop() - stones.pop())
return stones[0]
class Solution:
def lastStoneWeight(self, s: List[int]) -> int:
return next((s[0] for _ in count() if not s[1:] or insort(s,s.pop()-s.pop())),s.sort())
class Solution:
def lastStoneWeight(self, s: List[int]) -> int:
return (s.sort(),all(s[1:] and [insort(s,s.pop()-s.pop())] for _ in count()),s[0])[2]
You can also evalulate multiline code with exec
. Unlike eval
, is not limited to a single string.
class Solution:
def minimumOneBitOperations(self, n: int) -> int:
return next((r for _ in count()if not(n and(r:=r^n,n:=n//2))),r:=0)
class Solution:
def minimumOneBitOperations(self, n: int) -> int:
r=[0];exec('while n:\n r[0]^=n\n n//=2');return r[0]
class Solution:
def minimumOneBitOperations(self, n: int) -> int:
return(f:=lambda n:n and n^f(n//2))(n)
To swap values you can use either exec
(inline version of a,b=b,a
) or a temporary variable (t:=a,a:=b,b:=t
).
Note that eval
accepts only a single expression, and returns the value of the given expression,
whereas exec
ignores the return value from its code, and always returns None
, its use has no effect
on the compiled bytecode of the function where it is used. It does however affect existing variables.
Example:
class Solution:
def sortColors(self, nums: List[int]) -> None:
def fn(t,b):
red, white, blue = t
return (swap:=lambda a,x,y:exec('a[x],a[y]=a[y],a[x]'),(swap(nums,red,white),
(red+1,white+1,blue))[1] if nums[white]==0 else ((red,white+1,blue) if nums[white]==1
else (swap(nums,white,blue),(red,white,blue-1))[1]))[1]
reduce(fn, nums, [0,0,len(nums)-1])
class Solution:
def sortColors(self, nums: List[int]) -> None:
(s:=lambda a,x,y:(t:=a[x],setitem(a,x,a[y]),setitem(a,y,t),a)[3],
f:=lambda a,i,j,k:(f(s(a,i,j),i+1,j+1,k) if a[j]==0 else f(a,i,j+1,k) if a[j]==1
else f(s(a,j,k),i,j,k-1)) if i<=j<=k else None)[1](nums,0,0,len(nums)-1)
Also you can try a swap function here (but it's pretty long, I don't use it):
swap = lambda a,x,y:(lambda f=a.__setitem__:(f(x,(a[x],a[y])),f(y,a[x][0]),f(x,a[x][1])))()
You can use map
for a lot of things, for example to traverse through adjacent cells.
class Solution:
def maxAreaOfIsland(self, grid: List[List[int]]) -> int:
def dfs(i,j):
if 0<=i<len(grid) and 0<=j<len(grid[0]) and grid[i][j]:
grid[i][j] = 0
return 1 + sum(map(dfs,(i+1,i,i-1,i),(j,j+1,j,j-1)))
return 0
return max(dfs(i,j) for i in range(len(grid)) for j in range(len(grid[0])))
class Solution:
def maxAreaOfIsland(self, g: List[List[int]]) -> int:
return max((f:=lambda i,j:setitem(g[i],j,0) or 1 + sum(map(f,(i+1,i,i-1,i),(j,j+1,j,j-1)))
if 0<=i<len(g) and 0<=j<len(g[0]) and g[i][j] else 0)(i,j)
for i in range(len(g)) for j in range(len(g[0])))
Though it's shorter to use complex numbers for 2d maps (introduced by Stephan Pochmann):
class Solution:
def maxAreaOfIsland(self, grid):
grid = {i + j*1j: val for i, row in enumerate(grid) for j, val in enumerate(row)}
def area(z):
return grid.pop(z, 0) and 1 + sum(area(z + 1j**k) for k in range(4))
return max(map(area, set(grid)))
class Solution:
def maxAreaOfIsland(self, grid):
return max(map(a:=lambda z: g.pop(z, 0) and 1 + sum(a(z + 1j**k) for k in range(4)),
set(g:= {i + j*1j: val for i, row in enumerate(grid) for j, val in enumerate(row)})))
Complex numbers in general are very useful as 2d coordinates:
class Solution:
def isPathCrossing(self, p: str) -> bool:
z=0;return len(p)>=len({0,*{z:=z+1j**'NESW'.find(c)for c in p}})
You can convert lists or tuples to True
with !=0
instead of bool()
(3 chars shorter).
class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
grid = {i + j*1j:int(val) for i,row in enumerate(grid) for j,val in enumerate(row)}
def f(z):
return grid.pop(z,0) and bool([f(z + 1j**k) for k in range(4)])
return sum(map(f, set(grid)))
class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
return sum(map(f:=lambda z:g.pop(z,0) and [f(z + 1j**k) for k in range(4)]!=0,
set(g:={i + j*1j:int(x) for i,row in enumerate(grid) for j,x in enumerate(row)})))
class Solution:
def closedIsland(self, grid: List[List[str]]) -> int:
g = {i+j*1j:1-x for i,r in enumerate(grid) for j,x in enumerate(r)}
f = lambda z:g.pop(z,0) and [f(z+1j**k) for k in range(4)]!=0
sum(f(z) for z in set(g) if not(0<z.real<len(grid)-1 and 0<z.imag<len(grid[0])-1))
return sum(map(f,set(g)))
class Solution:
def closedIsland(self, grid: List[List[str]]) -> int:
return (g:={i+j*1j:1-x for i,r in enumerate(grid) for j,x in enumerate(r)},
f:=lambda z:g.pop(z,0) and [f(z+1j**k) for k in range(4)]!=0,[f(z) for z in set(g)
if not(0<z.real<len(grid)-1 and 0<z.imag<len(grid[0])-1)]) and sum(map(f,set(g)))
class Solution:
def uniquePathsIII(self, grid: List[List[int]]) -> int:
def f(z,r):
if x:=g.pop(z,0):
if x==3 and not g:
r = r + 1
for k in range(4):
r = f(z + 1j**k, r)
g.update({z:x})
return r
g = {i + j*1j:x+1 for i, row in enumerate(grid) for j,x in enumerate(row) if x!=-1}
return f(next(z for z,x in g.items() if x==2),0)
class Solution:
def uniquePathsIII(self, grid: List[List[int]]) -> int:
return (g:={i + j*1j:x+1 for i, row in enumerate(grid) for j,x in enumerate(row)
if x!=-1}) and (f:=lambda z,r:[(x:=g.pop(z,0)) and (x==3 and not g and (r:=r+1),
[r:=f(z + 1j**k,r) for k in range(4)],g.update({z:x}))] and r)
(next(z for z,x in g.items() if x==2), 0)
Unicode find (NOT Union Find) is the greatest trick of all time to solve graph problems. The idea is to use string replace in a Unicode space. Introduced by Stephan Pochmann.
class Solution:
def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:
t = ''.join(map(chr, range(1001)))
for u,v in edges:
if t[u]==t[v]:
return [u,v]
t = t.replace(t[u],t[v])
class Solution:
def findRedundantConnection(self, e: List[List[int]]) -> List[int]:
t=''.join(map(chr,range(1001)));
return next([u,v]for u,v in e if t[u]==(t:=t.replace(t[u],t[v]))[u])
Another example:
class Solution:
def swimInWater(self, g: List[List[int]]) -> int:
n = len(g)
t,r = ''.join(map(chr,range(n*n))),range(n)
for w,i,j in sorted((g[i][j],i,j)for i,j in product(r,r)):
for x,y in ((i+1,j),(i-1,j),(i,j+1),(i,j-1)):
if n>y>=0<=x<n and g[x][y]<=w:
t = t.replace(t[i*n+j],t[x*n+y])
if t[0]==t[-1]:
return w
return 0
class Solution:
def swimInWater(self, g: List[List[int]]) -> int:
n=len(g);t,r=''.join(map(chr,range(n*n))),range(n);return next((w for w,i,j in
sorted((g[i][j],i,j)for i,j in product(r,r))if[t:=t.replace(t[i*n+j],t[x*n+y]) for x,y
in((i+1,j),(i-1,j),(i,j+1),(i,j-1)) if n>y>=0<=x<n and g[x][y]<=w]and t[0]==t[-1]),0)
Another example (Q4 at https://leetcode.com/contest/weekly-contest-392):
class Solution:
def minimumCost(self, n: int, edges: List[List[int]], query: List[List[int]]) -> List[int]:
t,c = ''.join(map(chr,range(n))),{}
for u,v,w in edges:
t = t.replace(t[u],t[v])
for u,v,w in edges:
c[t[u]] = c.get(t[u],w)&w
return [0 if u==v else c[t[u]] if t[u]==t[v] else -1 for u,v in query]
class Solution:
def minimumCost(self, n: int, e: List[List[int]], q: List[List[int]]) -> List[int]:
t,c=''.join(map(chr,range(n))),{};all(t:=t.replace(t[u],t[v])for u,v,_ in e);
[setitem(c,t[u],c.get(t[u],w)&w)for u,v,w in e];
return[u!=v and t[u]!=t[v]and-1or c[t[u]]for u,v in q]
Cache decorator, @lru_cache
or @cache
(since Python 3.9) may be used as an inline function cache(lambda ...)
.
Essentially, a built-in memoization. Brings computation complexity from exponential to quadratic or linear, depending of the problem.
Decorator source code is in functools.py.
You can also implement C++ version of a cache decorator.
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
@cache
def dfs(i, k, sell):
return 0 if k==0 or i==len(prices) \
else max(dfs(i+1, k-1, 0) + prices[i], dfs(i+1, k, 1)) if sell \
else max(dfs(i+1, k, 1)-prices[i], dfs(i+1, k, sell))
return dfs(0, k, 0)
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
return (f:=cache(lambda i,k,s:0 if k==0 or i==len(prices)
else max(f(i+1,k-s,1-s)+prices[i]*(2*s-1),f(i+1,k,s))))(0,k,0)
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
@cache
def f(n):
return min([1 + f(n-c) for c in coins]) if n>0 else 0 if n==0 else inf
x = f(amount)
return x if x!=inf else -1
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
return (lambda x:x if x!=inf else -1)((f:=cache(lambda n:
min([1+f(n-c) for c in coins]) if n>0 else 0 if n==0 else inf))(amount))
It is sometimes necessary to reset cache with cache_clear
between tests to avoid Memory Limit Exceeded error.
class Solution:
def lengthOfLongestSubsequence(self, a: List[int], t: int) -> int:
return(a.sort(),r:=(f:=cache(lambda i,b:b and -inf if b<0 or i<0 else
max(1+f(i-1,b-a[i]),f(i-1,b))))(len(a)-1,t),f.cache_clear())and(-1,r)[r>0]
You can also specify maxsize option as f=lru_cache(maxsize)(lambda ...)
in case of memory issues:
class Solution:
def shortestCommonSupersequence(self, a: str, b: str) -> str:
return(f:=lru_cache(9**5)(lambda i,j:a[i:]and b[j:]and(a[i]==b[j]and a[i]+f(i+1,j+1)
or min(a[i]+f(i+1,j),b[j]+f(i,j+1),key=len))or a[i:]or b[j:]))(0,0)
Use it to flatten a loop.
class Solution:
def lengthOfLongestSubstring(self, s):
start, res, h = 0, 0, {}
for i, c in enumerate(s):
start = max(start, h.get(c,0))
res = max(res, i - start + 1)
h[c] = i + 1
return res
class Solution:
def lengthOfLongestSubstring(self, s):
def fn(a,b):
start, res, h = a
i, c = b
start = max(start, h.get(c,0))
res = max(res, i - start + 1)
h[c] = i + 1
return start,res,h
return reduce(fn,enumerate(s),[0,0,{}])[1]
class Solution:
def lengthOfLongestSubstring(self, s):
return reduce(lambda a,b:(s:=max(a[0],a[2].get(b[1],0)),max(a[1],b[0]-s+1),
{**a[2],b[1]:b[0]+1}),enumerate(s),(0,0,{}))[1]
class Solution:
def lengthOfLongestSubstring(self, s):
return reduce(lambda a,b:(lambda t,r,h,i,c:(s:=max(t,h.get(c,0)),max(r,i-s+1),
{**h,c:i+1}))(*a,*b),enumerate(s),(0,0,{}))[1]
Another example:
class Solution:
def longestValidParentheses(self, s: str) -> int:
def fn(a,b):
r, s = a
i, p = b
return (max(r,i-s[-2][0]), s[:-1]) if p==')' and s[-1][1]=='(' else (r, s+[(i,p)])
return reduce(fn, enumerate(s), (0,[(-1, ')')]))[0]
class Solution:
def longestValidParentheses(self, s: str) -> int:
return reduce(lambda a,b:(max(a[0],b[0]-a[1][-2][0]),a[1][:-1]) if b[1]==')'
and a[1][-1][1]=='(' else (a[0],a[1]+[b]),enumerate(s),(0,[(-1,')')]))[0]
The product function from itertools is sometimes handy.
class Solution:
def nthUglyNumber(self, n: int) -> int:
return sorted(2**a*3**b*5**c for a in range(32)for b in range(20)for c in range(14))[n-1]
class Solution:
def nthUglyNumber(self, n: int) -> int:
return sorted(2**a*3**b*5**c for a,b,c in product(*map(range,(32,20,14))))[n-1]
class Solution:
def nthUglyNumber(self, n: int) -> int:
return sorted(2**a*3**b*5**c for a,b,c in product(*[range(32)]*3))[n-1]
Can be used anywhere in place of nested loops. Example:
class Solution:
def countPrefixSuffixPairs(self, w: List[str]) -> int:
r=range(len(w))
return sum(i<j and w[j].startswith(w[i])and w[j].endswith(w[i])for i in r for j in r)
class Solution:
def countPrefixSuffixPairs(self, w: List[str]) -> int:
return sum(b.startswith(a)and b.endswith(a)for a,b in combinations(w,2))
class Solution:
def countPrefixSuffixPairs(self, w: List[str]) -> int:
return sum(a==b[:len(a)]==b[-len(a):]for a,b in combinations(w,2))
Nobody will stop you from using semicolons, but you'd still have to convert while and for loops.
Example:
class Solution:
def swapNodes(self, h: Optional[ListNode], k: int) -> Optional[ListNode]:
q = h
i = 1
d = {}
while q:
d[i] = q
q = q.next
i += 1
d[k].val, d[i-k].val = d[i-k].val, d[k].val
return h
class Solution:
def swapNodes(self, h: Optional[ListNode], k: int) -> Optional[ListNode]:
q=h;i=1;d={};all(q and(setitem(d,i,q),q:=q.next,i:=i+1) for _
in count());d[k].val,d[i-k].val=d[i-k].val,d[k].val;return h
class Solution:
def swapNodes(self, h: Optional[ListNode], k: int) -> Optional[ListNode]:
l=[h]+[h:=h.next for _ in[1]*10**5if h];a,b=l[k-1],l[~k];a.val,b.val=b.val,a.val;return l[0]
Many leetcode problems use Fibonacci sequence that can be calculated using a variety of different methods.
class Solution:
def fib(self, n: int) -> int:
a,b = 0,1
for _ in range(n):
a,b = b,a+b
return a
# classic Binet, https://r-knott.surrey.ac.uk/Fibonacci/fibFormula.html
class Solution:
def fib(self, n: int) -> int:
phi = (1 + sqrt(5)) / 2
return round(pow(phi, n) / sqrt(5))
class Solution:
def fib(self, n: int) -> int:
n-=1;r=5**.5;return round(((1+r)/2)**-~n/r)
class Solution:
def fib(self, n: int) -> int:
r=5**.5;return round(((1+r)/2)**n/r)
# generating function, https://en.wikipedia.org/wiki/Generating_function
class Solution:
def fib(self, n: int) -> int:
x=1<<32;return x**~-n*x*x//(x*x+~x)%x
class Solution:
def fib(self, n: int) -> int:
x=9**n;return x**-~n//(x*x+~x)%x
class Solution:
def fib(self, n: int) -> int:
return pow(x:=2<<n,n+1,x*x+~x)%x
class Solution:
def climbStairs(self, n: int) -> int:
a=b=1
for _ in range(n):
a,b = b,a+b
return a
class Solution:
def climbStairs(self, n):
return pow(x:=2<<n,n+2,x*x+~x)%x
class Solution:
def tribonacci(self, n):
a,b,c = 1,0,0
for _ in range(n):
a,b,c = b,c,a+b+c
return c
# https://mathworld.wolfram.com/TribonacciNumber.html
class Solution:
def tribonacci(self, n: int) -> int:
return round((599510/325947)**n*39065/116186)
class Solution:
def tribonacci(self, n: int) -> int:
return pow(x:=2<<n,n+2,~-x*x*x+~x)%x
Many problems can be solved with a single regex:
class Solution:
def sortVowels(self, s: str) -> str:
return re.sub(t:='(?i)[aeiou]',lambda m,v=sorted(findall(t,s)):heappop(v),s)
class Solution:
def isValid(self, w: str) -> bool:
return match('^(?=.*[aeiou])(?=.*[^0-9aeiou])[a-z0-9]{3,}$',w,I)
class Solution:
def makeGood(self, s: str) -> str:
[s:=re.sub(r'(.)(?!\1)(?i:\1)','',s)for _ in s];return s
class Solution:
def clearDigits(self, s: str) -> str:
[s:=re.sub('\D\d','',s)for _ in s];return s
class Solution:
def isCircularSentence(self, s: str) -> bool:
return not re.search('(.) (?!\\1)',s+' '+s)
There are many uses, remember that it supports any function besides the default "sum".
class Solution():
def stalinSort(self, a: List[int]) -> List[int]:
return [x for i,x in enumerate(a)if x>=max(a[:i+1])]
class Solution():
def stalinSort(self, a: List[int]) -> List[int]:
return compress(a,map(ge,a,accumulate(a,max)))
For the Kadane-like problems you have to maintain a couple of counters. You can just use max
on a comprehension.
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
cur_max, max_till_now = 0, -inf
for c in nums:
cur_max = max(c, cur_max + c)
max_till_now = max(max_till_now, cur_max)
return max_till_now
class Solution:
def maxSubArray(self, n: List[int]) -> int:
return max(accumulate(n,lambda c,x:max(c+x,x)))
class Solution:
def maxSubArray(self, n: List[int]) -> int:
c=0;return max(c:=max(c+x,x)for x in n)
If there are more counters, you can combine intermediary counter and target counter calculation using a walrus operator.
class Solution:
def maxAscendingSum(self, n: List[int]) -> int:
p=c=0;return max((c:=x+c*(x>p),p:=x)[0]for x in n)
class Solution:
def maxAscendingSum(self, n: List[int]) -> int:
p=c=0;return max(c:=x+c*(x>p)+0*(p:=x)for x in n)
class Solution:
def maxAscendingSum(self, n: List[int]) -> int:
p=c=0;return max(c:=x+c*(p<(p:=x))for x in n)
You can save a few characters using asterisk operator *
.
One *
means "expand this as a list", two **
means "expand this as a dictionary".
Note with **
you can only expand dictionaries, e.g. {'a':1, **dict}
.
class Solution:
def checkStraightLine(self, p):
(a,b),(c,d)=p[:2];return all((x-a)*(d-b)==(c-a)*(y-b)for x,y in p)
class Solution:
def checkStraightLine(self, p):
(a,b),(c,d),*_=p;return all((x-a)*(d-b)==(c-a)*(y-b)for x,y in p)
There's a nice way to convert an iterable to list, e.g. x=[*g]
equals *x,=g
(1 char shorter). Or expand lists:
class Solution:
def findMaxAverage(self, n: List[int], k: int) -> float:
s=[0]+[*accumulate(n)];return max(map(sub,s[k:],s))/k
class Solution:
def findMaxAverage(self, n: List[int], k: int) -> float:
s=[0,*accumulate(n)];return max(map(sub,s[k:],s))/k
You can also use this syntax to unpack iterables, e.g. a,*b,c=range(5)
means a=1;b=[2,3,4];c=5
.
class Solution:
def waysToSplitArray(self, a: list[int]) -> int:
return sum(map((sum(a)/2).__le__,accumulate(a[:-1])))
class Solution:
def waysToSplitArray(self, a: list[int]) -> int:
*p,s=accumulate(a);return sum(map((s/2).__le__,p))
Rotate array problem was published in Programming Pearls (pages 624-625 of a September 1983 edition).
The problem continues to look hard until you finally come up with the right aha! insight. Let's view it as transforming the array AB into the array BA, but let's also assume we have a subroutine that reverses the elements in a specified portion of the array.
Rotating string "ABCDEFGH" by i=3 characters left (n is string length, indexes start from 1):
reverse(1, i) /* CBADEFGH */
reverse(i+1, n) /* CBAHGFED */
reverse(1, n) /* DEFGHABC */
This implementation of rotating a ten-element array up by five positions (Figure 1) is from Doug Mcllroy; try it. The reversal code is time- and space-efficient, and is so short and simple that it's pretty hard to get wrong.
It is exactly the code that Kernighan and Plauger use in the text editor in their book. Brian Kernighan reports that this code indeed ran correctly the first time it was executed, while their previous code for a similar task contained several bugs. This code is also used in several text editors, including the UNIX editor ed.
# rotate array AKA Doug Mcllroy, Programming Pearls
# reverse parts at split point then reverse whole array
# you can do it in a reverse order to change direction
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
def reverse(i, j):
while i < j:
nums[i], nums[j] = nums[j], nums[i]
i, j = i+1, j-1
n = len(nums)
k = k % n
reverse(0, n-1)
reverse(0, k-1)
reverse(k, n-1)
return nums
It's pretty suboptimal though. Reversing three times is simplest but moves every element exactly twice, takes O(N) time and O(1) space It is possible to circle shift an array moving each element exactly once also in O(N) time and O(1) space (https://stackoverflow.com/questions/876293/fastest-algorithm-for-circle-shift-n-sized-array-for-m-position).
# GCD solution, true O(n)
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
n = len(nums)
shift = n - (k % n)
for i in range(gcd(n, shift)):
j = i
while (k := (j + shift) % n) != i:
nums[j],nums[k] = nums[k],nums[j]
j = k
Other ways:
# using built-in reverse function
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
k = k % len(nums)
nums[:k] = reversed(nums[:k])
nums[k:] = reversed(nums[k:])
nums.reverse()
# not inplace
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
[nums.insert(0,nums.pop()) for _ in range(k)]
# deque built-in rotate method
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
nums[:]=(q:=deque(nums)).rotate(k) or q
# minified
class Solution:
def rotate(self, a: List[int], k: int) -> None:
k%=len(a);a[:]=a[-k:]+a[:-k]
There also problems where you have to determine if string was rotated. The trick is to search in a string concatenated with its copy.
If s consists of repeating parts then at some point it should be equal to the rotated version of itself. Checking If s is a sub-string of (s+s)[1:-1] basicaly does all the job of checking for all rotated versions of s except s+s just in a single operation (which is usually SIMD-accelerated).
class Solution:
def repeatedSubstringPattern(self, s: str) -> bool:
return s in (s+s)[1:-1]
class Solution:
def check(self, a: List[int]) -> bool:
return sum(map(gt,a,a[1:]+a))<2
Note that key=itemgetter(n)
is the same length as key=lambda x:x[n]
but a little bit clearer to read.
The performance of itemgetter is also better than lambda (up to 2x, because of the creation of the lambda).
Sometimes you can skip key=itemgetter(0)
in comparison operations by converting an argument
to a tuple (15 characters shorter).
class Solution:
def jobScheduling(self, s: List[int], e: List[int], p: List[int]) -> int:
a=sorted(zip(s,e,p));return(f:=cache(lambda i:i-len(a)and max(f(
bisect_left(a,a[i][1],key=itemgetter(0)))+a[i][2],f(i+1))))(0)
class Solution:
def jobScheduling(self, s: List[int], e: List[int], p: List[int]) -> int:
a=sorted(zip(s,e,p));return(f:=cache(lambda i:i-len(a)and max(f(
bisect_left(a,(a[i][1],)))+a[i][2],f(i+1))))(0)
You could also use map(list.pop, v)
instead of [x[-1] for x in v]
to collect the last elements of the list.
class Solution:
def findDiagonalOrder(self, n: List[List[int]]) -> List[int]:
return map(list.pop,sorted([i+j,j,t]for i,r in enumerate(n)for j,t in enumerate(r)))
Using zip
to get elements from the list of tuples is usually shorter, but not always:
class Solution:
def findSmallestSetOfVertices(self, n: int, edges: List[List[int]]) -> List[int]:
return {*range(n)}-{*[*zip(*edges)][1]}
class Solution:
def findSmallestSetOfVertices(self, n: int, edges: List[List[int]]) -> List[int]:
return {*range(n)}-{j for _,j in edges}
Python has comparison chaining. You can use expressions like 0<=i<n
, m>j>=0<=i<n
and a!=b!=c
in a single condition.
class Solution:
def expressiveWords(self, s: str, words: List[str]) -> int:
def f(v,w,j=0):
for i in range(len(v)):
if j<len(w) and v[i]==w[j]:
j += 1
elif v[i-1:i+2] != v[i]*3 != v[i-2:i+1]:
return False
return j==len(w)
return sum(f(s,w) for w in words)
class Solution:
def expressiveWords(self, s: str, words: List[str]) -> int:
return sum((f:=lambda v,w,j=0:next((0 for i in range(len(v)) if not(j<len(w) and v[i]==w[j]
and (j:=j+1))and v[i-1:i+2]!=v[i]*3!=v[i-2:i+1]),1) and j==len(w))(s,w) for w in words)
Python handles multi-argument comparisons in the same order as an and
operator, so you can use a shorter form:
class Solution:
def isPowerOfFour(self, n: int) -> bool:
return n>0 and log(n,4)%1==0
class Solution:
def isPowerOfFour(self, n: int) -> bool:
return n>0==log(n,4)%1
You can check if any of the numbers is negative as x|y<0
or if both numbers are non-zero as x|y
.
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
return (f:=cache(lambda i,j:i|j<0 and inf or grid[i][j]+(i|j and min(f(i,j-1),f(i-1,j)))))
(len(grid)-1,len(grid[0])-1)
You can use bitwise &
,|
instead of and
,or
where possible. You can use x&1
instead of x==1
, if 0<=x<=2.
class Solution:
def isScramble(self, s1: str, s2: str) -> bool:
return (f:=cache(lambda a,b:a==b or any((f(a[:i],b[:i]) and f(a[i:],b[i:]))
or (f(a[i:],b[:-i]) and f(a[:i],b[-i:])) for i in range(1,len(a)))))(s1,s2)
class Solution:
def isScramble(self, s1: str, s2: str) -> bool:
return (f:=cache(lambda a,b:a==b or any((f(a[:i],b[:i])&f(a[i:],b[i:]))
|(f(a[i:],b[:-i])&f(a[:i],b[-i:])) for i in range(1,len(a)))))(s1,s2)
~
reverts every bit. Therefore, ~x
means -x-1
. You can use it as reversed index, i.e. for i=0
, a[~i]
means a[-1]
, etc. or just replace -x-1
with ~x
.
For integer n, you can write n+1
as -~n
, n-1
as ~-n
. This uses the same number of characters, but can indirectly cut spaces or parens for operator precedence.
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
r=range(n);return[[4*(n-(a:=min(min(i,n-i-1),min(j,n-j-1))))
*a+(i+j-2*a+1,4*(n-2*a-1)-(i+j-2*a)+1)[i>j] for j in r] for i in r]
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
r=range(n);return[[4*(n-(a:=min(i,j,~i+n,~j+n)))
*a+(i+j-2*a+1,4*n-6*a-i-j-3)[i>j]for j in r]for i in r]
You can replace 0 if x==y else z
with x-y and z
, it's a little bit counterintuitive, but shorter.
Condition x if c else y
can be written as c and x or y
, it's shorter but depends on x (x should not be 0).
class Solution:
def snakesAndLadders(self, board: List[List[int]]) -> int:
n,v,q = len(board),{1:0},[1]
def f(i):
x = (i - 1)%n
y = (i - 1)//n
c = board[~y][~x if y%2 else x]
return c if c>0 else i
for i in q:
for j in range(i+1, i+7):
k = f(j)
if k==n*n:
return v[i]+1
if k not in v:
v[k] = v[i]+1
q.append(k)
return -1
class Solution:
def snakesAndLadders(self, board: List[List[int]]) -> int:
return (n:=len(board),v:={1:0},q:=[1]) and next((v[i]+1 for i in q for j in range(i+1,i+7)
if (k:=(x:=(j-1)%n,y:=(j-1)//n) and ((c:=board[~y][y%2 and ~x or x])>0 and c or j))==n*n
or (k not in v and (v.update({k:v[i]+1}) or q.append(k)))),-1)
You can use booleans as indices in lists, even nested: (a,(b,c)[u==w])[x==y]
, or you can multiply by a boolean.
class Solution:
def removeStars(self, s: str) -> str:
return reduce(lambda r,c:(r[:-1],r+c)[c>'*'],s)
class Solution:
def simplifyPath(self, path: str) -> str:
return'/'+'/'.join(reduce(lambda r,p:(r+[p]*('.'!=p!=''),r[:-1])[p=='..'],path.split('/'),[]))
Python 3 lacks cmp
(3-way compare) and sign function (copysign(bool(x),x)
is too long), but you can use (x>0)-(x<0)
for sign(x)
and (a>b)-(a<b)
for cmp(a,b)
. Note you can use -1,0,1
indexes for Python lists natively.
class Solution:
def stoneGameIII(self, v: List[int]) -> str:
f=cache(lambda i:i<len(v)and max(sum(v[i:i+k])-f(i+k)for k in(1,2,3)));x=f(0);
return('Tie','Alice','Bob')[(x>0)-(x<0)]
# return(('Tie','Bob')[x<0],'Alice')[x>0] # or like this (1 char shorter)
You can replace cmp
written as lambda x:(x>0)-(x<0)
with 0..__le__
or .0.__le__
(11 characters shorter).
class Solution:
def rearrangeArray(self, n: List[int]) -> List[int]:
n.sort(key=lambda x:(x>0)-(x<0));return chain(*zip(n[len(n)//2:],n))
class Solution:
def rearrangeArray(self, n: List[int]) -> List[int]:
n.sort(key=0..__le__);return chain(*zip(n[len(n)//2:],n))
You can replace x>0
predicate with 0..__lt___
function and replace x!=0
with operator.truth
or just bool
:
class Solution:
def mergeNodes(self, h: Optional[ListNode]) -> Optional[ListNode]:
return h.deserialize(str([sum(v)for k,v in groupby(eval(h.serialize(h)),bool)if k]))
Cmp as a sorting key may be reduced further to a tuple (x>p,x==p)
.
class Solution:
def pivotArray(self, a: List[int], p: int) -> List[int]:
return sorted(a,key=lambda x:(x>p,x==p))
Quite a few things become shorter with statistics.mode
(most common value of discrete or nominal data).
class Solution:
def findMissingAndRepeatedValues(self, g: List[List[int]]) -> List[int]:
return sum(a:=sum(g,[]))-sum({*a}),(n:=len(a))*(n+1)//2-sum({*a})
class Solution:
def findMissingAndRepeatedValues(self, g: List[List[int]]) -> List[int]:
return mode(a:=sum(g,[])),comb(len(a)+1,2)-sum({*a})
class Solution:
def findErrorNums(self, nums: List[int]) -> List[int]:
t=sum({*nums});return sum(nums)-t,comb(len(nums)+1,2)-t
class Solution:
def findErrorNums(self, nums: List[int]) -> List[int]:
return mode(nums),comb(len(nums)+1,2)-sum({*nums})
class Solution:
def majorityElement(self, nums: List[int]) -> int:
return sorted(nums)[len(nums)//2]
class Solution:
def majorityElement(self, nums: List[int]) -> int:
return mode(nums)
# https://youtu.be/pKO9UjSeLew (Joma Tech: If Programming Was An Anime)
class Solution:
def findDuplicate(self, nums: List[int]) -> int:
tortoise = hare = nums[0]
while True:
tortoise = nums[tortoise]
hare = nums[nums[hare]]
if tortoise == hare:
break
tortoise = nums[0]
while tortoise != hare:
tortoise = nums[tortoise]
hare = nums[hare]
return hare
class Solution:
def findDuplicate(self, nums: List[int]) -> int:
return mode(nums)
You can use s.encode()
instead of ord
or map(ord,s)
It's the same length but doesn't need generation evaluation.
class Solution:
def scoreOfString(self, s: str) -> int:
return sum(abs(x-y)for x,y in pairwise(map(ord,s)))
class Solution:
def scoreOfString(self, s: str) -> int:
return sum(map(abs,map(sub,s:=s.encode(),s[1:])))
You can use count()
and map
to replace an enumerate
list comprehension (a few characters shorter):
class Solution:
def maximumImportance(self, n: int, r: List[List[int]]) -> int:
return sum(v*(n-i)for i,(_,v)in enumerate(Counter(chain(*r)).most_common()))
class Solution:
def maximumImportance(self, n: int, r: List[List[int]]) -> int:
return-sum(map(mul,count(-n),sorted(Counter(chain(*r)).values())[::-1]))
Starmap makes an iterator that computes the function using arguments obtained from the iterable. Used instead of map() when argument parameters have already been "pre-zipped" into tuples (see itertools.starmap).
Applying a function to an iterable with starmap
and pairwise
may be done with map
(12 chars shorter):
class Solution:
def findArray(self, p: List[int]) -> List[int]:
return starmap(xor,pairwise([0]+p))
class Solution:
def findArray(self, p: List[int]) -> List[int]:
return map(xor,p,[0]+p)
Very often you can replace zip
with map
, it evaluates iterables the same way:
class Solution:
def minMovesToSeat(self, s: List[int], t: List[int]) -> int:
return sum(abs(a-b)for a,b in zip(*map(sorted,(s,t))))
class Solution:
def minMovesToSeat(self, s: List[int], t: List[int]) -> int:
return sum(map(abs,map(sub,*map(sorted,(s,t)))))
You can also replace starmap
and enumerate
with map
and count()
(7 characters shorter).
class Solution:
def countBadPairs(self, a: List[int]) -> int:
return sum(x*(len(a)-x)for x in Counter(starmap(sub,enumerate(a))).values())//2
class Solution:
def countBadPairs(self, a: List[int]) -> int:
return sum(x*(len(a)-x)for x in Counter(map(sub,a,count())).values())//2
You can write combination function (binomial) n*(n-1)//2
as comb(n,2)
, or replace (n-1)
with ~-n
to cut parens.
class Solution:
def tupleSameProduct(self, a) -> int:
return sum(8*comb(n,2)for n in Counter(starmap(mul,combinations(a,2))).values())
class Solution:
def tupleSameProduct(self, a) -> int:
return sum(4*n*(n-1)for n in Counter(starmap(mul,combinations(a,2))).values())
class Solution:
def tupleSameProduct(self, a) -> int:
return sum(~-n*n*4for n in Counter(starmap(mul,combinations(a,2))).values())
You can use numpy.convolve
for sliding windows, it's usually shorter than reduce or list comprehension:
class Solution:
def maxSatisfied(self, c: List[int], g: List[int], m: int) -> int:
t,a=0,[*map(mul,c,g)];[t:=(t,w:=sum(a[i:i+m]))[w>t]for i in range(len(c)-m+1)]
return t+sum(c)-sum(a)
class Solution:
def maxSatisfied(self, c: List[int], g: List[int], m: int) -> int:
return max(__import__('numpy').convolve(a:=[*map(mul,c,g)],[1]*m))+sum(c)-sum(a)
You can replace ceil(x/k)
with -(-x//k)
(1 character shorter):
class Solution:
def maxKelements(self, a: List[int], k: int) -> int:
a.sort();return sum((x:=a.pop(),insort(a,ceil(x/3)))[0]for _ in range(k))
class Solution:
def maxKelements(self, a: List[int], k: int) -> int:
a.sort();return sum((x:=a.pop(),insort(a,-(-x//3)))[0]for _ in range(k))
These operators are available in a global namespace (Leetcode includes "operator" module by default).
Operation | Syntax | Function |
---|---|---|
Unary | ||
Negation (Arithmetic) | - a |
neg(a) |
Negation (Logical) | not a |
not_(a) |
Positive | + a |
pos(a) |
Truth Test | obj |
truth(obj) |
Bitwise Inversion | ~ a |
invert(a) |
Binary | ||
Addition | a + b |
add(a, b) |
Concatenation | seq1 + seq2 |
concat(seq1, seq2) |
Containment Test | obj in seq |
contains(seq, obj) |
Division | a / b |
truediv(a, b) |
Division | a // b |
floordiv(a, b) |
Bitwise And | a & b |
and_(a, b) |
Bitwise Exclusive Or | a ^ b |
xor(a, b) |
Bitwise Or | a | b |
or_(a, b) |
Exponentiation | a ** b |
pow(a, b) |
Identity | a is b |
is_(a, b) |
Identity | a is not b |
is_not(a, b) |
Indexed Deletion | del obj[k] |
delitem(obj, k) |
Indexing | obj[k] |
getitem(obj, k) |
Left Shift | a << b |
lshift(a, b) |
Modulo | a % b |
mod(a, b) |
Multiplication | a * b |
mul(a, b) |
Matrix Multiplication | a @ b |
matmul(a, b) |
Right Shift | a >> b |
rshift(a, b) |
String Formatting | s % obj |
mod(s, obj) |
Subtraction | a - b |
sub(a, b) |
Ordering (Less Than) | a < b |
lt(a, b) |
Ordering (Less or Equal) | a <= b |
le(a, b) |
Equality | a == b |
eq(a, b) |
Difference (Not Equal) | a != b |
ne(a, b) |
Ordering (Greater or Equal) | a >= b |
ge(a, b) |
Ordering (Greater Than) | a > b |
gt(a, b) |
Ternary | ||
Indexed Assignment | obj[k] = v |
setitem(obj, k, v) |
Slice Assignment | seq[i:j] = values |
setitem(seq, slice(i, j), values) |
Slice Deletion | del seq[i:j] |
delitem(seq, slice(i, j)) |
Slicing | seq[i:j] |
getitem(seq, slice(i, j)) |
The same naming goes for the member functions, but with underscores, e.g. (1).__lt__
.
Knowing precedence helps to cut parens. For example, you can replace (n-1)
with ~-n
(binary negation).
Precedence | Operators | Description | Associativity |
---|---|---|---|
1 | () |
Parentheses | Left to right |
2 | x[i], x[i:j] |
Subscription, slicing | Left to right |
3 | await x |
Await expression | N/A |
4 | ** |
Exponentiation | Right to left |
5 | +x, -x, ~x |
Positive, negative, bitwise NOT | Right to left |
6 | *, @, /, //, % |
Multiply (matrix), division, remainder | Left to right |
7 | +, – |
Addition and subtraction | Left to right |
8 | <<, >> |
Shifts | Left to right |
9 | & |
Bitwise AND | Left to right |
10 | ^ |
Bitwise XOR | Left to right |
11 | | |
Bitwise OR | Left to right |
12 | in, not in, is, is not, <, <=, >, >=, !=, == |
Comparisons, membership tests, identity tests | Left to Right |
13 | not x |
Boolean NOT | Right to left |
14 | and |
Boolean AND | Left to right |
15 | or |
Boolean OR | Left to right |
16 | if-else |
Conditional expression | Right to left |
17 | lambda |
Lambda expression | N/A |
18 | := |
Assignment expression (walrus) | Right to left |
See https://docs.python.org/3/library/itertools.html
Iterator | Arguments | Results | Example |
---|---|---|---|
count() |
[start[,step]] | start, start+step, start+2*step, ... | count(10) → 10 11 12 13 14 ... |
cycle() |
p | p0, p1, … plast, p0, p1, ... | cycle('ABCD') → A B C D A B C D ... |
repeat() |
elem [,n] | elem, elem, elem, ... endlessly or up to n times | repeat(10, 3) → 10 10 10 |
Iterator | Arguments | Results | Example |
---|---|---|---|
accumulate() |
p [,func] | p0, p0+p1, p0+p1+p2, ... | accumulate([1,2,3,4,5]) → 1 3 6 10 15 |
batched() |
p, n | (p0, p1, ..., p_n-1), ... | batched('ABCDEFG', n=3) → ABC DEF G |
chain() |
p, q, ... | p0, p1, ... plast, q0, q1, ... | chain('ABC', 'DEF') → A B C D E F |
chain.from_iterable() |
iterable | p0, p1, ... plast, q0, q1, ... | chain.from_iterable(['ABC', 'DEF']) → A B C D E F |
compress() |
data, selectors | (d[0] if s[0]), (d[1] if s[1]), ... | compress('ABCDEF', [1,0,1,0,1,1]) → A C E F |
dropwhile() |
predicate, seq | seq[n], seq[n+1], starting when predicate fails | dropwhile(lambda x: x<5, [1,4,6,3,8]) → 6 3 8 |
filterfalse() |
predicate, seq | elements of seq where predicate(elem) fails | filterfalse(lambda x: x<5, [1,4,6,3,8]) → 6 8 |
groupby() |
iterable[, key] | sub-iterators grouped by value of key(v) | groupby(['A','B','DEF'], len) → (1, A B) (3, DEF) |
islice() |
seq, [start,] stop [, step] | elements from seq[start:stop:step] | islice('ABCDEFG', 2, None) → C D E F G |
pairwise() |
iterable | (p[0], p[1]), (p[1], p[2]) | pairwise('ABCDEFG') → AB BC CD DE EF FG |
starmap() |
func, seq | func(*seq[0]), func(*seq[1]), ... | starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000 |
takewhile() |
predicate, seq | seq[0], seq[1], until predicate fails | takewhile(lambda x: x<5, [1,4,6,3,8]) → 1 4 |
tee() |
it, n | it1, it2, ... itn splits one iterator into n | |
zip_longest() |
p, q, ... | (p[0], q[0]), (p[1], q[1]), ... | zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D- |
Function | Arguments | Results |
---|---|---|
product() |
p, q, ... [repeat=1] | cartesian product, equivalent to a nested for-loop |
permutations() |
p[, r] | r-length tuples, all possible orderings, no repeated elements |
combinations() |
p, r | r-length tuples, in sorted order, no repeated elements |
combinations_with_replacement() |
p, r | r-length tuples, in sorted order, with repeated elements |
Examples | Results |
---|---|
product('ABCD', repeat=2) |
AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD |
permutations('ABCD', 2) |
AB AC AD BA BC BD CA CB CD DA DB DC |
combinations('ABCD', 2) |
AB AC AD BC BD CD |
combinations_with_replacement('ABCD', 2) |
AA AB AC AD BB BC BD CC CD DD |
- An expression like
x&(x-1)==0
is useful to check if unsignedx
is power of 2 or 0 (Kernighan, rightmost bit). - Unless the following token starts with e or E, you can remove the space following a number. E.g.
i==4 and j==4
becomesi==4and j==4
. - Instead of range(x), you can use the * operator on a list of anything, e.g.
[1]*8
can replacerange(8)
(unless you really need the counter value). - Conditions like
if i<len(r)
may be replaced withif r[i:]
, it's 3 characters shorter. - You can replace
set(n)
with{*n}
(2 characters shorter). - You can convert bool with
~~()
instead ofint()
(as in js) or prepend with a single+
(5 characters shorter). - You can subtract 1 or replace
not
operator with bitwise negation~-
to save on space (1-5 characters shorter). - You can check for set membership with
{x}&s
instead ofx in s
(1 character shorter). - Very often
x==0
can be replaced withx<1
(1 character shorter). - A condition like
h>i>=0<=j<w
can be written ash>i>-1<j<w
(1 character shorter). - You can replace
q and q[-1]==c
withq[-1:]==[c]
(3 characters shorter).
- Don't Piss down my back and tell me it's raining: Notebook for Sarcastic, Witty, and Sharp Tongued One Liners
- They're not characters at all, they're just brilliant repositories of fantastic, killer one-liners
- Python One-Liners: Write Concise, Eloquent Python Like a Professional
- Python One-Liners - Concise Python Code
- One-line coder makes me depressed
- Tips for Golfing in Python
- King of One-Liners