Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
print(pd.__version__) # 2.2.2
data = {'CustomerID': [101, 102, 103, 104, 105],
'Name': ['John', 'Alice', 'Bob', 'David', 'Mike'],
'CreditScore': [650, 720, 710, 600, 750],
'LoanAmount': [40000, 70000, 80000, 30000, 120000],
'AccountType': ['Savings', 'Current', 'Current', 'Savings', 'Current']}
df = pd.DataFrame(data)
# This line generates unexpected columns without warning
df.loc[(df['AccountType'] == "Current") & (df['CreditScore'] > 700), df['LoanAmount']] = 90000
print(df)
Issue Description
I found a hidden bug inside .loc[] method that silently generates new columns when the second parameter is a Series column selector.
Expected Behavior
Only LoanAmount column should be updated.
Installed Versions
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 75.1.0
pip : 24.2
Cython : None
pytest : 7.4.4
hypothesis : None
sphinx : 7.3.7
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 5.2.1
html5lib : None
pymysql : 1.4.6
psycopg2 : None
jinja2 : 3.1.4
IPython : 8.27.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : 1.3.7
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.6.1
gcsfs : None
matplotlib : 3.9.2
numba : 0.60.0
numexpr : 2.8.7
odfpy : None
openpyxl : 3.1.5
pandas_gbq : None
pyarrow : 16.1.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : 2024.6.1
scipy : 1.13.1
sqlalchemy : 2.0.34
tables : 3.10.1
tabulate : 0.9.0
xarray : 2023.6.0
xlrd : None
zstandard : 0.23.0
tzdata : 2023.3
qtpy : 2.4.1
pyqt5 : None