A Docker-based development environment for data analysis using Polars, Jupyter Lab, and Python 3.11.
- Docker installed on your system
- Git (optional, for cloning the repository)
-
Build the Docker image:
./01-docker_build.sh # or docker build -t polars-data-analysis .
-
Run the container:
./02-docker_run.sh # or docker run -p 8888:8888 -v ${PWD}:/app polars-data-analysis
-
Open your web browser and navigate to the URL shown in the terminal output (usually starts with
http://127.0.0.1:8888/...
)Default token:
yourtoken
- Polars
- NumPy
- Pandas
- Matplotlib
- Seaborn
- scikit-learn
- TensorFlow
- PyTorch
- Transformers
- Hugging Face Hub
- XGBoost
- LightGBM
- CatBoost
- Optuna
- AlphaPy
- Jupyter Lab
- Jupyter Black
- IPyWidgets
- MLflow
- Weights & Biases
- FastAPI
- Streamlit
- Dash
- Python 3.11 base environment
- Jupyter Lab server accessible via browser
- Volume mounting for persistent notebook storage
- Pre-installed data science and ML packages
- Polars for high-performance data manipulation
The project uses volume mounting (-v ${PWD}:/app
) to sync the local directory with the container's /app
directory. Any changes made to notebooks or other files will persist on your local machine.
This project includes GitHub Actions workflows for continuous integration testing. The CI process:
- Builds a lightweight Docker image with essential dependencies
- Runs basic package import tests
- Verifies the development environment integrity
This project is open-source and available under the MIT License.