Open
Description
Subsequent benchmarks may have skipped some commits. The link above lists the commits that are between the two benchmark runs where the regression was identified.
- algorithms.Factorize.time_factorize
- unique=False, sort=True, dtype='Int64' - 37.158% (3.525ms)
- algorithms.Factorize.time_factorize
- unique=False, sort=True, dtype='int64' - 33.521% (3.193ms)
- algorithms.Factorize.time_factorize
- unique=False, sort=True, dtype='uint64' - 54.820% (4.591ms)
- algorithms.Factorize.time_factorize
- unique=True, sort=True, dtype='Int64' - 92.170% (3.445ms)
- algorithms.Factorize.time_factorize
- unique=True, sort=True, dtype='int64' - 108.313% (3.342ms)
- algorithms.Factorize.time_factorize
- unique=True, sort=True, dtype='uint64' - 114.737% (3.512ms)
- algorithms.Quantile.time_quantile
- quantile=0, interpolation='higher', dtype='uint64' - 25.613% (165.698us)
- algorithms.Quantile.time_quantile
- quantile=0, interpolation='lower', dtype='uint64' - 22.663% (147.475us)
- algorithms.Quantile.time_quantile
- quantile=0, interpolation='nearest', dtype='uint64' - 21.717% (142.373us)
- algorithms.Quantile.time_quantile
- quantile=0.5, interpolation='higher', dtype='uint64' - 27.233% (198.594us)
- algorithms.Quantile.time_quantile
- quantile=0.5, interpolation='lower', dtype='uint64' - 20.987% (155.436us)
- algorithms.Quantile.time_quantile
- quantile=0.5, interpolation='nearest', dtype='uint64' - 23.533% (171.635us)
- algorithms.SortIntegerArray.time_argsort
- param1=1000 - 99.125% (15.284us)
- algorithms.SortIntegerArray.time_argsort
- param1=100000 - 180.881% (1.725ms)
- arithmetic.FrameWithFrameWide.time_op_different_blocks
- op=, shape=(1000, 10000) - 32.776% (6.585ms)
- arithmetic.FrameWithFrameWide.time_op_different_blocks
- op=, shape=(10000, 1000) - 32.557% (6.515ms)
- arithmetic.FrameWithFrameWide.time_op_different_blocks
- op=, shape=(100000, 100) - 31.923% (6.409ms)
- arithmetic.FrameWithFrameWide.time_op_different_blocks
- op=, shape=(1000000, 10) - 32.710% (6.555ms)
- arithmetic.FrameWithFrameWide.time_op_same_blocks
- op=, shape=(1000, 10000) - 45.816% (3.883ms)
- arithmetic.FrameWithFrameWide.time_op_same_blocks
- op=, shape=(10000, 1000) - 44.663% (3.754ms)
- arithmetic.FrameWithFrameWide.time_op_same_blocks
- op=, shape=(100000, 100) - 45.862% (3.825ms)
- arithmetic.FrameWithFrameWide.time_op_same_blocks
- op=, shape=(1000000, 10) - 45.481% (3.809ms)
- arithmetic.IndexArithmetic.time_modulo
- dtype='float' - 16.105% (1.357ms)
- arithmetic.IntFrameWithScalar.time_frame_op_with_scalar
- dtype=<class 'numpy.float64'>, scalar=2, op= - 104.690% (25.076ms)
- arithmetic.IntFrameWithScalar.time_frame_op_with_scalar
- dtype=<class 'numpy.float64'>, scalar=2, op= - 96.911% (20.445ms)
- arithmetic.IntFrameWithScalar.time_frame_op_with_scalar
- dtype=<class 'numpy.float64'>, scalar=3.0, op= - 111.146% (25.314ms)
- arithmetic.IntFrameWithScalar.time_frame_op_with_scalar
- dtype=<class 'numpy.float64'>, scalar=3.0, op= - 109.149% (21.663ms)
- arithmetic.IntFrameWithScalar.time_frame_op_with_scalar
- dtype=<class 'numpy.int64'>, scalar=3.0, op= - 83.165% (17.422ms)
- arithmetic.IntFrameWithScalar.time_frame_op_with_scalar
- dtype=<class 'numpy.int64'>, scalar=3.0, op= - 85.214% (15.724ms)
- arithmetic.MixedFrameWithSeriesAxis.time_frame_op_with_series_axis1
- opname='floordiv' - 12.208% (1.961ms)
- arithmetic.NumericInferOps.time_modulo
- dtype=<class 'numpy.float32'> - 145.724% (3.616ms)
- arithmetic.NumericInferOps.time_modulo
- dtype=<class 'numpy.float64'> - 33.017% (923.456us)
- arithmetic.NumericInferOps.time_modulo
- dtype=<class 'numpy.int8'> - 9.935% (142.112us)
- arithmetic.NumericInferOps.time_modulo
- dtype=<class 'numpy.uint16'> - 16.012% (173.997us)
- arithmetic.NumericInferOps.time_modulo
- dtype=<class 'numpy.uint8'> - 10.984% (120.332us)
- arithmetic.Ops2.time_frame_float_div - [ ] arithmetic.Ops2.time_frame_float_mod - [ ] categoricals.Constructor.time_datetimes - [ ] categoricals.Constructor.time_datetimes_with_nat - [ ] categoricals.Indexing.time_sort_values - [ ] ctors.DatetimeIndexConstructor.time_from_list_of_datetimes - [ ] frame_methods.Interpolate.time_interpolate - [ ] frame_methods.Interpolate.time_interpolate_some_good - [ ] frame_methods.Isnull.time_isnull_strngs - [ ] frame_methods.MaskBool.time_frame_mask_bools - [ ] groupby.Datelike.time_sum
- grouper='period_range' - 44.690% (317.391us)
- groupby.Nth.time_frame_nth
- dtype='datetime' - 75.580% (3.456ms)
- groupby.Nth.time_frame_nth
- dtype='float32' - 74.782% (3.428ms)
- groupby.Nth.time_frame_nth
- dtype='float64' - 76.631% (3.507ms)
- groupby.Nth.time_frame_nth
- dtype='object' - 77.814% (3.552ms)
- groupby.Nth.time_frame_nth_any
- dtype='datetime' - 71.377% (7.239ms)
- groupby.Nth.time_frame_nth_any
- dtype='float32' - 71.165% (7.099ms)
- groupby.Nth.time_frame_nth_any
- dtype='float64' - 71.716% (7.140ms)
- groupby.Nth.time_frame_nth_any
- dtype='object' - 57.491% (7.792ms)
- groupby.Nth.time_groupby_nth_all
- dtype='datetime' - 70.058% (3.404ms)
- groupby.Nth.time_groupby_nth_all
- dtype='float32' - 73.113% (3.515ms)
- groupby.Nth.time_groupby_nth_all
- dtype='float64' - 72.177% (3.486ms)
- groupby.Nth.time_groupby_nth_all
- dtype='object' - 50.576% (3.955ms)
- groupby.Nth.time_series_nth
- dtype='datetime' - 73.980% (3.413ms)
- groupby.Nth.time_series_nth
- dtype='float32' - 74.494% (3.446ms)
- groupby.Nth.time_series_nth
- dtype='float64' - 74.933% (3.437ms)
- groupby.Nth.time_series_nth
- dtype='object' - 76.878% (3.523ms)
- groupby.Nth.time_series_nth_all
- dtype='datetime' - 76.387% (7.105ms)
- groupby.Nth.time_series_nth_all
- dtype='float32' - 77.084% (7.017ms)
- groupby.Nth.time_series_nth_all
- dtype='float64' - 77.265% (7.037ms)
- groupby.Nth.time_series_nth_all
- dtype='object' - 59.747% (7.236ms)
- groupby.Nth.time_series_nth_any
- dtype='datetime' - 76.118% (6.995ms)
- groupby.Nth.time_series_nth_any
- dtype='float32' - 79.546% (7.244ms)
- groupby.Nth.time_series_nth_any
- dtype='float64' - 80.196% (7.241ms)
- groupby.Nth.time_series_nth_any
- dtype='object' - 60.213% (7.271ms)
- index_object.SetOperations.time_operation
- index_structure='non_monotonic', dtype='ea_int', method='intersection' - 23.981% (617.178us)
- index_object.SetOperations.time_operation
- index_structure='non_monotonic', dtype='ea_int', method='union' - 49.419% (1.575ms)
- index_object.SetOperations.time_operation
- index_structure='non_monotonic', dtype='int', method='intersection' - 28.083% (584.699us)
- index_object.SetOperations.time_operation
- index_structure='non_monotonic', dtype='int', method='union' - 66.983% (1.569ms)
- index_object.UnionWithDuplicates.time_union_with_duplicates - [ ] indexing.Setitem.time_setitem - [ ] indexing.Setitem.time_setitem_list - [ ] io.csv.ToCSV.time_frame
- kind='long' - 32.341% (25.263ms)
- io.csv.ToCSV.time_frame
- kind='mixed' - 19.639% (2.434ms)
- io.csv.ToCSV.time_frame
- kind='wide' - 42.100% (33.758ms)
- io.csv.ToCSVIndexes.time_head_of_multiindex - [ ] io.csv.ToCSVIndexes.time_multiindex - [ ] io.csv.ToCSVIndexes.time_standard_index - [ ] io.csv.ToCSVMultiIndexUnusedLevels.time_single_index_frame - [ ] io.csv.ToCSVMultiIndexUnusedLevels.time_sliced_frame - [ ] join_merge.ConcatIndexDtype.time_concat_series
- dtype='Int64', structure='has_na', axis=1, sort=True - 11.463% (167.952us)
- join_merge.ConcatIndexDtype.time_concat_series
- dtype='int64', structure='non_monotonic', axis=1, sort=True - 10.660% (142.172us)
- libs.InferDtype.time_infer_dtype
- dtype='bytes' - 19.770% (332.623us)
- libs.InferDtype.time_infer_dtype
- dtype='np-object' - 12.723% (109.441us)
- libs.InferDtype.time_infer_dtype
- dtype='py-object' - 15.688% (310.092us)
- libs.InferDtype.time_infer_dtype_skipna
- dtype='bytes' - 14.362% (265.872us)
- libs.InferDtype.time_infer_dtype_skipna
- dtype='np-object' - 12.250% (124.514us)
- libs.InferDtype.time_infer_dtype_skipna
- dtype='py-object' - 12.405% (264.610us)
- multiindex_object.SetOperations.time_operation
- index_structure='monotonic', dtype='datetime', method='intersection', sort=False - 25.405% (675.589us)
- multiindex_object.SetOperations.time_operation
- index_structure='monotonic', dtype='ea_int', method='intersection', sort=False - 24.877% (662.321us)
- multiindex_object.SetOperations.time_operation
- index_structure='monotonic', dtype='int', method='intersection', sort=False - 23.600% (630.194us)
- multiindex_object.SetOperations.time_operation
- index_structure='monotonic', dtype='string', method='intersection', sort=False - 26.704% (703.723us)
- multiindex_object.SetOperations.time_operation
- index_structure='non_monotonic', dtype='datetime', method='intersection', sort=False - 22.821% (646.939us)
- multiindex_object.SetOperations.time_operation
- index_structure='non_monotonic', dtype='ea_int', method='intersection', sort=False - 21.997% (629.880us)
- multiindex_object.SetOperations.time_operation
- index_structure='non_monotonic', dtype='int', method='intersection', sort=False - 25.333% (713.896us)
- multiindex_object.SetOperations.time_operation
- index_structure='non_monotonic', dtype='string', method='intersection', sort=False - 25.039% (720.382us)
- period.DataFramePeriodColumn.time_set_index - [ ] rolling.Groupby.time_method
- param1='kurt', param2=('rolling', {'window': 2}) - 27.138% (4.953ms)
- rolling.Groupby.time_method
- param1='max', param2=('rolling', {'window': 2}) - 29.353% (5.289ms)
- rolling.Groupby.time_method
- param1='mean', param2=('rolling', {'window': 2}) - 28.592% (5.197ms)
- rolling.Groupby.time_method
- param1='median', param2=('rolling', {'window': 2}) - 26.599% (5.115ms)
- rolling.Groupby.time_method
- param1='min', param2=('rolling', {'window': 2}) - 28.469% (5.145ms)
- rolling.Groupby.time_method
- param1='sum' (0), param2=('rolling', {'window': 2}) - 27.078% (4.941ms)
- rolling.Groupby.time_method
- param1='sum' (1), param2=('rolling', {'window': 2}) - 26.896% (4.881ms)
- series_methods.SearchSorted.time_searchsorted
- dtype='float16' - 32.724% (185.983us)
- series_methods.SeriesConstructor.time_constructor_no_data - [ ] strings.Methods.time_isnumeric
- dtype='str' - 19.225% (171.273us)
- strings.Methods.time_isupper
- dtype='str' - 11.858% (105.256us)
Metadata
Metadata
Assignees
Labels
No labels