Skip to content

Ein Echtzeit-Gesichtserkennungssystem mit KI/ML mit Bilderfassung per Webcam, einem TensorFlow-basierten Deep-Learning-Modell mit VGG16 und Pipelines zur Gesichtserkennung und -identifizierung. Dieses Projekt integriert Computer Vision und KI, um Gesichtsdaten für Echtzeitanwendungen dynamisch zu analysieren.

Notifications You must be signed in to change notification settings

stife/Echtzeit-Gesichtserkennung-mittels-KI-ML

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

Real-Time Facial Recognition using AI/ML

📌 Overview

This project demonstrates a real-time facial recognition system using AI/ML. It captures live video, detects faces, and recognizes identities using a TensorFlow-based model built on the VGG16 architecture.

🎯 Features

  • Real-time image capture using OpenCV.
  • Face detection and recognition via deep learning.
  • Model optimized for fast inference with GPU support.
  • Modular design for training and testing.

🛠️ Tech Stack

  • Programming Language: Python
  • Frameworks/Libraries: TensorFlow, OpenCV, NumPy, Matplotlib
  • Model Architecture: VGG16

🚀 Installation and Usage

Prerequisites

  • Python 3.8 or later
  • Required libraries include TensorFlow, OpenCV, and Matplotlib. Steps to Run
  1. Clone the repository and navigate to the project directory.
  2. Capture images, train the model, and perform real-time recognition.

📂 Project Structure

The project includes directories for data storage, scripts for data collection and model training, and saved models for recognition tasks.

📖 How It Works

  1. Data Collection: Captures images via webcam and saves them for training.
  2. Model Training: Trains a facial recognition model using VGG16 for feature extraction.
  3. Real-Time Recognition: Identifies faces from the live webcam feed and matches them with known identities.

📚 Future Improvements

  • Add support for larger datasets.
  • Implement more advanced face matching algorithms (e.g., FaceNet).
  • Enhance accuracy for diverse lighting and angles.

💡 Credits

Developed by Manya Gautam as part of a real-time AI/ML project.

About

Ein Echtzeit-Gesichtserkennungssystem mit KI/ML mit Bilderfassung per Webcam, einem TensorFlow-basierten Deep-Learning-Modell mit VGG16 und Pipelines zur Gesichtserkennung und -identifizierung. Dieses Projekt integriert Computer Vision und KI, um Gesichtsdaten für Echtzeitanwendungen dynamisch zu analysieren.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%