Skip to content

Commit 1706400

Browse files
committed
last HMM plots. All plots refactored and checked
1 parent dac88c8 commit 1706400

File tree

4 files changed

+5881
-99
lines changed

4 files changed

+5881
-99
lines changed

src/ethoscopy/behavpy_plotly.py

+78-47
Original file line numberDiff line numberDiff line change
@@ -1840,7 +1840,6 @@ def plot_hmm_quantify(self, hmm, variable:str = 'moving', labels:list = None, co
18401840
18411841
Returns:
18421842
fig (plotly.figure.Figure): Figure object of the plot.
1843-
Generated by the .plot_overtime() method
18441843
Raises:
18451844
Multiple assertion of ValueErrors in regards to faceting and HMM lists
18461845
"""
@@ -1931,7 +1930,6 @@ def plot_hmm_quantify_length(self, hmm, variable:str = 'moving', labels:list = N
19311930
19321931
Returns:
19331932
fig (plotly.figure.Figure): Figure object of the plot.
1934-
Generated by the .plot_overtime() method
19351933
Raises:
19361934
Multiple assertion of ValueErrors in regards to faceting and HMM lists
19371935
"""
@@ -2014,13 +2012,14 @@ def plot_hmm_quantify_length_min_max(self, hmm, variable:str = 'moving', labels:
20142012
When false the colour palette is used instead as in the Seaborn version. Default is False.
20152013
func (str, optional): When binning to the above what function should be applied to the grouped data.
20162014
Default is "max" as is necessary for the "moving" variable.
2015+
z_score (bool, optional): If True (Default) the z-score for each entry is found the those above/below zero are removed.
2016+
Default is True.
20172017
title (str, optional): The title of the plot. Default is an empty string.
20182018
t_column (str, optional): The name of column containing the timing data (in seconds). Default is 't'
20192019
grids (bool, optional): true/false whether the resulting figure should have grids. Default is False.
20202020
20212021
Returns:
20222022
fig (plotly.figure.Figure): Figure object of the plot.
2023-
Generated by the .plot_overtime() method
20242023
Raises:
20252024
Multiple assertion of ValueErrors in regards to faceting and HMM lists
20262025
Notes:
@@ -2106,13 +2105,14 @@ def plot_hmm_quantify_transition(self, hmm, variable:str = 'moving', labels:list
21062105
When false the colour palette is used instead as in the Seaborn version. Default is False.
21072106
func (str, optional): When binning to the above what function should be applied to the grouped data.
21082107
Default is "max" as is necessary for the "moving" variable.
2108+
z_score (bool, optional): If True (Default) the z-score for each entry is found the those above/below zero are removed.
2109+
Default is True.
21092110
title (str, optional): The title of the plot. Default is an empty string.
21102111
t_column (str, optional): The name of column containing the timing data (in seconds). Default is 't'
21112112
grids (bool, optional): true/false whether the resulting figure should have grids. Default is False.
21122113
21132114
Returns:
21142115
fig (plotly.figure.Figure): Figure object of the plot.
2115-
Generated by the .plot_overtime() method
21162116
Raises:
21172117
Multiple assertion of ValueErrors in regards to faceting and HMM lists
21182118
Notes:
@@ -2359,34 +2359,51 @@ def plot_hmm_raw(self, hmm, variable:str = 'moving', colours:list = None, num_pl
23592359

23602360
return fig
23612361

2362-
def plot_hmm_response(self, mov_df, hmm, variable = 'moving', response_col = 'has_responded', labels = None, colours = None, facet_col = None, facet_arg = None, facet_labels = None,
2363-
t_bin = 60, func = 'max', z_score = True, title = '', t_column = 't', col_uniform = True, grids = False):
2362+
def plot_hmm_response(self, mov_df, hmm, variable:str = 'moving', response_col:str = 'has_responded', labels:list = None, colours:list = None,
2363+
facet_col:None|str = None, facet_arg:None|list = None, facet_labels:None|list = None, t_bin:int = 60, col_uniform:bool = False, func:str = 'max',
2364+
z_score:bool = True, title:str = '', t_column:str = 't', grids:bool = False):
23642365
"""
2365-
Generates a plot to explore the response rate to a stimulus per hidden state from a Hidden markov Model. Y-axis is the average response rate per group / state / True or mock interactions
2366+
Generates a plot to explore the response rate to a stimulus per hidden state from a Hidden markov Model.
2367+
Y-axis is the average response rate per group / state / True or mock interactions
2368+
23662369
23672370
Args:
23682371
mov_df (behavpy dataframe): The matching behavpy dataframe containing the movement data from the response experiment
2369-
hmm (hmmlearn.hmm.CategoricalHMM): The accompanying trained hmmlearn model to decode the data.
2370-
variable (str, optional): The name of column that is to be decoded by the HMM. Default is 'moving'.
2371-
response_col (str, optional): The name of the coloumn that has the responses per interaction. Must be a column of bools. Default is 'has_responded'.
2372-
labels (list[string], optional): A list of the names of the decoded states, must match the number of states in the given model and colours.
2373-
If left as None and the model is 4 states the names will be ['Deep Sleep', 'Light Sleep', 'Quiet Awake', 'Active Awake'], else it will be ['state_0', 'state_1', ...]. Default is None
2374-
colours (list[string], optional): A list of colours for the decoded states, must match length of labels. If left as None and the
2375-
model is 4 states the colours will be ['Dark Blue', 'Light Blue', 'Red', 'Dark Red'], else it will be the colour palette choice. Default is None.
2372+
hmm (hmmlearn.hmm.CategoricalHMM): This should be a trained HMM Learn object with the
2373+
correct hidden states and emission states for your dataset
2374+
variable (str, optional): The column heading of the variable of interest. Default is "moving"
2375+
response_col (str, optional): The name of the coloumn that has the responses per interaction.
2376+
Must be a column of bools. Default is 'has_responded'.
2377+
labels (list[str], optional): The names of the different states present in the hidden markov model.
2378+
If None the labels are assumed to be ['Deep sleep', 'Light sleep', 'Quiet awake', 'Full awake'] if a 4 state model.
2379+
If None and not 4 states then generic labels are generated, i.e. 'state-1, state-2, state-n'.
2380+
Default is None.
2381+
colours (list[str/RGB], optional): The name of the colours you wish to represent the different states, must be the same length as labels.
2382+
If None the colours are by default for 4 states (blue and red), if not 4 then colours from the palette are chosen.
2383+
It accepts a specific colour or an array of numbers that are acceptable to Seaborn. Default is None.
23762384
facet_col (str, optional): The name of the column to use for faceting, must be from the metadata. Default is None.
2377-
facet_arg (list, optional): The arguments to use for faceting. If None then all distinct groups will be used. Default is None.
2378-
facet_labels (list, optional): The labels to use for faceting, these will be what appear on the plot. If None the labels will be those from the metadata. Default is None.
2379-
t_bin (int, optional): The time in seconds to bin the time series data to. Default is 60,
2380-
func (str, optional): When binning the time what function to apply the variable column. Default is 'max'.
2385+
facet_arg (list, optional): The arguments to use for faceting. If None then all distinct groups will be used.
2386+
Default is None.
2387+
facet_labels (list, optional): The labels to use for faceting, these will be what appear on the plot.
2388+
If None the labels will be those from the metadata. Default is None.
2389+
t_bin (int, optional): The time in seconds you want to bin the movement data to. Default is 60 or 1 minute
2390+
col_uniform (bool, optional): Unique to the plotly version of this method.
2391+
When True the colour scheme is based on the states and not the faceted column.
2392+
When false the colour palette is used instead as in the Seaborn version. Default is False.
2393+
func (str, optional): When binning to the above what function should be applied to the grouped data.
2394+
Default is "max" as is necessary for the "moving" variable.
2395+
z_score (bool, optional): If True (Default) the z-score for each entry is found the those above/below zero are removed.
2396+
Default is True.
23812397
title (str, optional): The title of the plot. Default is an empty string.
23822398
t_column (str, optional): The name of column containing the timing data (in seconds). Default is 't'
2383-
col_uniform (bool, optional): Unique to the plotly version of this method. When True the true interaction response is coloured by the
2384-
state colour choice even with multiple groups. When false the colour palette is used instead as in the Seaborn version. Default is True.
2385-
grids (bool, optional): true/false whether the resulting figure should have grids. Default is False
2399+
grids (bool, optional): true/false whether the resulting figure should have grids. Default is False.
23862400
23872401
Returns:
2388-
returns a plotly figure object
2389-
2402+
fig (plotly.figure.Figure): Figure object of the plot.
2403+
Raises:
2404+
KeyError:
2405+
If a column for the respones is not a column.
2406+
Multiple assertion of ValueErrors and KeyErrors in regards to faceting and HMM lists
23902407
Note:
23912408
This function must be called on a behavpy dataframe that is populated by data loaded in with the stimulus_response
23922409
analysing function.
@@ -2401,71 +2418,85 @@ def plot_hmm_response(self, mov_df, hmm, variable = 'moving', response_col = 'ha
24012418

24022419
grouped_data, palette_dict, h_order = self._hmm_response(mov_df, hmm = hmm, variable = variable, response_col=response_col, labels = labels, colours = colours,
24032420
facet_col = facet_col, facet_arg = facet_arg, facet_labels = facet_labels, t_bin = t_bin, func = func, t_column = t_column)
2421+
2422+
domains = np.arange(0, 1+(1/len(labels)), 1/len(labels))
24042423
if facet_col is None:
24052424
facet_col = ''
2425+
col_uniform = True # make it use the state colours if no facet
24062426

24072427
fig = go.Figure()
24082428
self._plot_ylayout(fig, yrange = [0, 1.01], t0 = 0, dtick = 0.2, ylabel = 'Response Rate', title = title, grid = grids)
24092429

24102430

2411-
for c, (col, st_lab) in enumerate(zip(colours, labels)):
2412-
sub_df = grouped_data[grouped_data['state'] == st_lab]
2431+
for c, (col, state) in enumerate(zip(colours, labels)):
2432+
2433+
sub_df = grouped_data[grouped_data['state'] == state]
24132434

24142435
for lab in h_order:
24152436

24162437
sub_np = sub_df[plot_column][sub_df[facet_col] == lab].to_numpy()
2417-
try:
2418-
mean, median, q3, q1, zlist = self._zscore_bootstrap(sub_np, z_score = z_score)
2419-
except KeyError:
2420-
continue
2421-
2438+
if len(sub_np) == 0: continue # normally used when no Spon. Mov. is present
2439+
2440+
mean, median, q3, q1, zlist = self._zscore_bootstrap(sub_np, z_score = z_score)
2441+
24222442
if col_uniform == True:
24232443
if 'Spon. Mov.' in lab:
24242444
marker_col = palette_dict[lab]
24252445
else:
24262446
marker_col = col
24272447
else:
24282448
marker_col = palette_dict[lab]
2429-
2449+
24302450
fig.add_trace(self._plot_meanbox(mean = [mean], median = [median], q3 = [q3], q1 = [q1],
2431-
x = [lab], colour = marker_col, showlegend = False, name = lab, xaxis = f'x{c+1}'))
2451+
x = [lab], colour = marker_col, showlegend = True, name = lab, xaxis = f'x{c+1}'))
24322452

24332453
label_list = [lab] * len(zlist)
24342454
fig.add_trace(self._plot_boxpoints(y = zlist, x = label_list, colour = marker_col,
24352455
showlegend = False, name = lab, xaxis = f'x{c+1}'))
24362456

2437-
domains = np.arange(0, 1+(1/len(labels)), 1/len(labels))
24382457
axis = f'xaxis{c+1}'
2439-
self._plot_xlayout(fig, xrange = False, t0 = False, dtick = False, xlabel = st_lab, domains = domains[c:c+2], axis = axis)
2458+
self._plot_xlayout(fig, xrange = False, t0 = False, dtick = False, xlabel = state, domains = domains[c:c+2], axis = axis)
2459+
# I don't know why the above plots the x-labels at the top. Will just have to leave it
2460+
2461+
fig.update_xaxes(showticklabels=False) # remove labels as they're too bulky
2462+
# reorder dataframe for stats output
2463+
if facet_col:
2464+
grouped_data = grouped_data.sort_values(facet_col)
2465+
grouped_data = grouped_data.drop(columns = ['previous_state'])
24402466

2441-
stats_df = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in stats_dict.items()]))
2442-
24432467
return fig, grouped_data
24442468

2445-
def plot_response_over_hmm_bouts(self, mov_df, hmm, variable = 'moving', response_col = 'has_responded', labels = None, colours = None, x_limit = 30, t_bin = 60, func = 'max', title = '', grids = False, t_column = 't'):
2469+
def plot_response_over_hmm_bouts(self, mov_df, hmm, variable:str = 'moving', response_col:str = 'has_responded', labels:list = None, colours:list = None,
2470+
x_limit:int = 30, t_bin:int = 60, func:str = 'max', title:str = '', grids:bool = False, t_column:str = 't'):
24462471
"""
24472472
Generates a plot showing the response rate per time stamp in each HMM bout. Y-axis is between 0-1 and the response rate, the x-axis is the time point
24482473
in each state as per the time the dataset is binned to when decoded.
24492474
24502475
Args:
24512476
mov_df (behavpy dataframe): The matching behavpy dataframe containing the movement data from the response experiment
2452-
hmm (hmmlearn.hmm.CategoricalHMM): The accompanying trained hmmlearn model to decode the data.
2453-
variable (str, optional): The name of column that is to be decoded by the HMM. Default is 'moving'.
2454-
response_col (str, optional): The name of the coloumn that has the responses per interaction. Must be a column of bools. Default is 'has_responded'.
2455-
labels (list[string], optional): A list of the names of the decoded states, must match the number of states in the given model and colours.
2456-
If left as None and the model is 4 states the names will be ['Deep Sleep', 'Light Sleep', 'Quiet Awake', 'Active Awake']. Default is None
2457-
colours (list[string], optional): A list of colours for the decoded states, must match length of labels. If left as None and the
2458-
model is 4 states the colours will be ['Dark Blue', 'Light Blue', 'Red', 'Dark Red']. Default is None.
2459-
x_limit (int, optional): A number to limit the x-axis by to remove outliers, i.e. 30 would be 30 minutes or less if t_bin is 60. Default 30.
2477+
hmm (hmmlearn.hmm.CategoricalHMM): This should be a trained HMM Learn object with the
2478+
correct hidden states and emission states for your dataset
2479+
variable (str, optional): The column heading of the variable of interest. Default is "moving"
2480+
response_col (str, optional): The name of the coloumn that has the responses per interaction.
2481+
Must be a column of bools. Default is 'has_responded'.
2482+
labels (list[str], optional): The names of the different states present in the hidden markov model.
2483+
If None the labels are assumed to be ['Deep sleep', 'Light sleep', 'Quiet awake', 'Full awake'] if a 4 state model.
2484+
If None and not 4 states then generic labels are generated, i.e. 'state-1, state-2, state-n'.
2485+
Default is None.
2486+
colours (list[str/RGB], optional): The name of the colours you wish to represent the different states, must be the same length as labels.
2487+
If None the colours are by default for 4 states (blue and red), if not 4 then colours from the palette are chosen.
2488+
It accepts a specific colour or an array of numbers that are acceptable to Seaborn. Default is None.
2489+
x_limit (int, optional): A number to limit the x-axis by to remove outliers, i.e. 30 would be 30 minutes or less if t_bin is 60.
2490+
Default 30.
24602491
t_bin (int, optional): The time in seconds to bin the time series data to. Default is 60,
24612492
func (str, optional): When binning the time what function to apply the variable column. Default is 'max'.
24622493
title (str, optional): The title of the plot. Default is an empty string.
24632494
grids (bool, optional): true/false whether the resulting figure should have grids. Default is False.
24642495
t_column (str, optional): The name of column containing the timing data (in seconds). Default is 't'
2496+
figsize (tuple, optional): The size of the figure in inches. Default is (0, 0) which auto-adjusts the size.
24652497
24662498
Returns:
2467-
fig (plotly.figure.Figure): Figure object of the plot.
2468-
2499+
fig (matplotlib.figure.Figure): Figure object of the plot.
24692500
Note:
24702501
This function must be called on a behavpy dataframe that is populated with data loaded with the stimulus_response
24712502
analysing function.

0 commit comments

Comments
 (0)