Skip to content

Commit e36111a

Browse files
committed
removed custom KeyError for methods as they'll be picked up by Pandas
1 parent 6c90c7a commit e36111a

File tree

2 files changed

+52
-60
lines changed

2 files changed

+52
-60
lines changed

src/ethoscopy/behavpy_core.py

+51-59
Original file line numberDiff line numberDiff line change
@@ -792,9 +792,6 @@ def _wrapped_time_alive(df: pd.DataFrame, name: str) -> pd.DataFrame:
792792
if not len(df):
793793
raise ValueError("Empty DataFrame provided")
794794

795-
if t_column not in df.columns:
796-
raise KeyError(f"Time column '{t_column}' not found")
797-
798795
# Calculate survival times
799796
gb = df.groupby(df.index).agg(**{
800797
'tmin': (t_column, 'min'),
@@ -827,10 +824,8 @@ def _wrapped_time_alive(df: pd.DataFrame, name: str) -> pd.DataFrame:
827824
'label': [name] * len(col)
828825
})
829826

830-
# Get group name
827+
# Get group name if facet_col is provided
831828
if facet_col is not None:
832-
if facet_col not in df.columns:
833-
raise KeyError(f"Facet column '{facet_col}' not found")
834829
name = df[facet_col].iloc[0]
835830
else:
836831
name = ''
@@ -986,9 +981,6 @@ def sleep_bout_analysis(self, sleep_column: str = 'asleep', as_hist: bool = Fals
986981
df.sleep_bout_analysis(as_hist=True, asleep=False)
987982
"""
988983

989-
if sleep_column not in self.columns:
990-
raise KeyError(f'Column heading "{sleep_column}", is not in the data table')
991-
992984
tdf = self.reset_index().copy(deep = True)
993985
return self.__class__(tdf.groupby('id', group_keys = False).apply(partial(self._wrapped_bout_analysis,
994986
var_name = sleep_column,
@@ -1084,13 +1076,7 @@ def curate_dead_animals(self, t_column: str = 't', mov_column: str = 'moving', t
10841076
ValueError: If resolution is not positive or larger than time_window
10851077
TypeError: If mov_column does not contain boolean values
10861078
"""
1087-
1088-
if t_column not in self.columns.tolist():
1089-
raise KeyError(f'Variable name entered, {t_column}, for t_column is not a column heading!')
1090-
1091-
if mov_column not in self.columns.tolist():
1092-
raise KeyError(f'Variable name entered, {mov_column}, for mov_column is not a column heading!')
1093-
1079+
# Check
10941080
if not pd.api.types.is_bool_dtype(self[mov_column]):
10951081
raise TypeError(f'Column {mov_column} must contain boolean values')
10961082

@@ -1146,12 +1132,6 @@ def curate_filter(df: pd.DataFrame, dict: Dict[str, List[int]]) -> pd.DataFrame:
11461132
return pd.DataFrame() # Return empty frame for missing IDs
11471133
return df[df[t_column].between(dict[specimen_id][0], dict[specimen_id][1])]
11481134

1149-
# Check if t_column and mov_column are valid
1150-
if t_column not in self.columns.tolist() or t_column not in mov_df.columns.tolist():
1151-
raise KeyError(f'Variable name entered, {t_column}, for t_column is not a column heading!')
1152-
if mov_column not in mov_df.columns.tolist():
1153-
raise KeyError(f'Variable name entered, {mov_column}, for mov_column is not a column heading!')
1154-
11551135
# Validate movement column contains boolean values
11561136
if not pd.api.types.is_bool_dtype(mov_df[mov_column]):
11571137
raise TypeError(f'Column {mov_column} must contain boolean values')
@@ -1257,10 +1237,6 @@ def interpolate_linear(self, variable: str, step_size: int, t_column: str = 't')
12571237
df = df.interpolate_linear('distance', step_size=60)
12581238
"""
12591239
# Input validation
1260-
if variable not in self.columns:
1261-
raise KeyError(f"Variable column '{variable}' not found in data")
1262-
if t_column not in self.columns:
1263-
raise KeyError(f"Time column '{t_column}' not found in data")
12641240
if step_size <= 0:
12651241
raise ValueError("Step size must be positive")
12661242

@@ -1383,16 +1359,13 @@ def bin_time(self, variable: Union[str, List[str]], bin_secs: int,
13831359
df = df.bin_time(['x', 'y'], bin_secs=60, function=lambda x: x.max() - x.min())
13841360
"""
13851361
# Validate bin_secs
1386-
if not isinstance(bin_secs, (int, float)) or bin_secs <= 0:
1362+
if not isinstance(bin_secs, int) or bin_secs <= 0:
13871363
raise ValueError("bin_secs must be a positive number")
13881364

13891365
if isinstance(variable, str):
13901366
variable = [variable]
13911367

1392-
# Validate column names
1393-
if t_column not in self.columns:
1394-
raise KeyError(f"Time column '{t_column}' not found in data")
1395-
1368+
# Validate column names
13961369
for var in variable:
13971370
if not isinstance(var, str):
13981371
raise TypeError(f"All variables must be strings, got {type(var)} for variable: {var}")
@@ -1455,9 +1428,6 @@ def remove_first_last_bout(self, variable: str) -> "behavpy_core":
14551428
# Remove first/last sleep bouts that may be incomplete
14561429
df = df.remove_first_last_bout('asleep')
14571430
"""
1458-
# Validate inputs
1459-
if variable not in self.columns:
1460-
raise KeyError(f"Column '{variable}' not found in data")
14611431

14621432
if not pd.api.types.is_bool_dtype(self[variable]):
14631433
raise TypeError(f"Column '{variable}' must contain boolean values")
@@ -1629,17 +1599,13 @@ def sleep_contiguous(self, mov_column: str = 'moving', t_column: str = 't', time
16291599
16301600
Raises:
16311601
KeyError: If mov_column or t_column not found in data
1602+
ValueError: If time_window_length or min_time_immobile is not a positive number
16321603
16331604
Example:
16341605
# Identify sleep with 1-minute windows and 5-minute threshold
16351606
df = df.sleep_contiguous(time_window_length=60, min_time_immobile=300)
16361607
"""
16371608

1638-
if mov_column not in self.columns.tolist():
1639-
raise KeyError(f'The movement column {mov_column} is not in the dataset')
1640-
if t_column not in self.columns.tolist():
1641-
raise KeyError(f'The time column {t_column} is not in the dataset')
1642-
16431609
# Validate time_window_length
16441610
if not isinstance(time_window_length, int) or time_window_length <= 0:
16451611
raise ValueError("time_window_length must be a positive number")
@@ -1712,14 +1678,6 @@ def feeding(self, food_position: str, dist_from_food: float = 0.05, micro_mov: s
17121678
if not 0 <= dist_from_food <= 1:
17131679
raise ValueError("dist_from_food must be between 0 and 1")
17141680

1715-
# Check required columns exist
1716-
if x_position not in self.columns:
1717-
raise KeyError(f"x_position column '{x_position}' not found in data")
1718-
if micro_mov not in self.columns:
1719-
raise KeyError(f"micro_mov column '{micro_mov}' not found in data")
1720-
if 'region_id' not in self.meta.columns:
1721-
raise KeyError("region_id column not found in metadata")
1722-
17231681
# Validate ROI lists
17241682
if not left_rois or not right_rois:
17251683
raise ValueError("ROI lists cannot be empty")
@@ -2157,23 +2115,57 @@ def get_hmm_raw(self, hmm: Any, variable: str = 'moving', t_bin: int = 60,
21572115

21582116
# PERIODOGRAM SECTION
21592117

2160-
def anticipation_score(self, variable: str, day_length: int = 24, lights_off: int = 12, t_column: str = 't') -> "behavpy_core":
2118+
def anticipation_score(self, variable: str, day_length: int = 24, lights_off: int = 12,
2119+
t_column: str = 't') -> "behavpy_core":
21612120
"""
2162-
A method to find the anticipation score, a metric for measuring circadian rythmn. The score is calculated as the percentage
2163-
of activity in the last six hours before lights on or off that is present in the last 3 hours. A higher score indicates greater
2164-
anticipation.
2121+
Calculate anticipation scores to measure circadian rhythm strength.
2122+
2123+
Computes an anticipation score by comparing activity levels in the 3 hours
2124+
immediately before a transition (lights on/off) to activity in the 6 hours before.
2125+
The score is calculated as: (activity in last 3hrs / activity in last 6hrs) * 100.
2126+
Higher scores indicate stronger anticipatory behavior.
21652127
21662128
Args:
2167-
variable (str): The name of the column containing the variable that measures activity.
2168-
day_length (int, optional): The lenght in hours the experimental day is. Default is 24.
2169-
lights_off (int, optional): The time point when the lights are turned off in an experimental day,
2170-
assuming 0 is lights on. Must be number between 0 and day_lenght. Default is 12.
2171-
2129+
variable (str): Column name containing activity measurements to analyze
2130+
day_length (int, optional): Length of experimental day in hours. Defaults to 24.
2131+
lights_off (int, optional): Hour when lights turn off, measured from lights on (0).
2132+
Must be between 0 and day_length. Defaults to 12.
2133+
t_column (str, optional): Column containing timestamps in seconds.
2134+
Defaults to 't'.
2135+
21722136
Returns:
2173-
An amended behavpy dataframe with anticipation scores.
2174-
Note:
2175-
This method is used internally in the plot_anticipation_score method.
2137+
behavpy_core: New behavpy object with addtional columns:
2138+
- anticipation_score: Percentage of 6-hour activity in final 3 hours
2139+
- phase: Either 'Lights On' or 'Lights Off'
2140+
2141+
Raises:
2142+
KeyError: If variable or t_column not found in data
2143+
ValueError: If lights_off not between 0 and day_length
2144+
2145+
Example:
2146+
# Calculate anticipation scores for movement data
2147+
df = df.anticipation_score('moving')
2148+
2149+
# Custom day length and lights-off time
2150+
df = df.anticipation_score('moving', day_length=12, lights_off=6)
2151+
2152+
Notes:
2153+
- Data is first wrapped to day_length hours using wrap_time()
2154+
- NaN values are dropped before calculation
2155+
- Scores are calculated separately for lights-on and lights-off transitions
2156+
- Used internally by plot_anticipation_score()
21762157
"""
2158+
2159+
# Validate lights_off is between 0 and day_length
2160+
if not 0 <= lights_off <= day_length:
2161+
raise ValueError(f"lights_off ({lights_off}) must be between 0 and day_length ({day_length})")
2162+
2163+
# Validate we have enough hours before transitions for calculation
2164+
if lights_off < 6:
2165+
raise ValueError("lights_off must be at least 6 hours after lights on for anticipation calculation")
2166+
if day_length - lights_off < 6:
2167+
raise ValueError("lights_off must be at least 6 hours before end of day for anticipation calculation")
2168+
21772169
def _ap_score(total, small):
21782170
try:
21792171
return (small / total) * 100

src/ethoscopy/behavpy_seaborn.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@
1616
from ethoscopy.analyse import max_velocity_detector
1717
from ethoscopy.misc.rle import rle
1818
from ethoscopy.misc.bootstrap_CI import bootstrap
19-
# from ethoscopy.misc.hmm_functions import hmm_pct_transition, hmm_mean_length, hmm_pct_state
19+
from ethoscopy.misc.hmm_functions import hmm_pct_transition, hmm_mean_length, hmm_pct_state
2020
from ethoscopy.misc.general_functions import concat
2121

2222
class behavpy_seaborn(behavpy_draw):

0 commit comments

Comments
 (0)