@@ -792,9 +792,6 @@ def _wrapped_time_alive(df: pd.DataFrame, name: str) -> pd.DataFrame:
792
792
if not len (df ):
793
793
raise ValueError ("Empty DataFrame provided" )
794
794
795
- if t_column not in df .columns :
796
- raise KeyError (f"Time column '{ t_column } ' not found" )
797
-
798
795
# Calculate survival times
799
796
gb = df .groupby (df .index ).agg (** {
800
797
'tmin' : (t_column , 'min' ),
@@ -827,10 +824,8 @@ def _wrapped_time_alive(df: pd.DataFrame, name: str) -> pd.DataFrame:
827
824
'label' : [name ] * len (col )
828
825
})
829
826
830
- # Get group name
827
+ # Get group name if facet_col is provided
831
828
if facet_col is not None :
832
- if facet_col not in df .columns :
833
- raise KeyError (f"Facet column '{ facet_col } ' not found" )
834
829
name = df [facet_col ].iloc [0 ]
835
830
else :
836
831
name = ''
@@ -986,9 +981,6 @@ def sleep_bout_analysis(self, sleep_column: str = 'asleep', as_hist: bool = Fals
986
981
df.sleep_bout_analysis(as_hist=True, asleep=False)
987
982
"""
988
983
989
- if sleep_column not in self .columns :
990
- raise KeyError (f'Column heading "{ sleep_column } ", is not in the data table' )
991
-
992
984
tdf = self .reset_index ().copy (deep = True )
993
985
return self .__class__ (tdf .groupby ('id' , group_keys = False ).apply (partial (self ._wrapped_bout_analysis ,
994
986
var_name = sleep_column ,
@@ -1084,13 +1076,7 @@ def curate_dead_animals(self, t_column: str = 't', mov_column: str = 'moving', t
1084
1076
ValueError: If resolution is not positive or larger than time_window
1085
1077
TypeError: If mov_column does not contain boolean values
1086
1078
"""
1087
-
1088
- if t_column not in self .columns .tolist ():
1089
- raise KeyError (f'Variable name entered, { t_column } , for t_column is not a column heading!' )
1090
-
1091
- if mov_column not in self .columns .tolist ():
1092
- raise KeyError (f'Variable name entered, { mov_column } , for mov_column is not a column heading!' )
1093
-
1079
+ # Check
1094
1080
if not pd .api .types .is_bool_dtype (self [mov_column ]):
1095
1081
raise TypeError (f'Column { mov_column } must contain boolean values' )
1096
1082
@@ -1146,12 +1132,6 @@ def curate_filter(df: pd.DataFrame, dict: Dict[str, List[int]]) -> pd.DataFrame:
1146
1132
return pd .DataFrame () # Return empty frame for missing IDs
1147
1133
return df [df [t_column ].between (dict [specimen_id ][0 ], dict [specimen_id ][1 ])]
1148
1134
1149
- # Check if t_column and mov_column are valid
1150
- if t_column not in self .columns .tolist () or t_column not in mov_df .columns .tolist ():
1151
- raise KeyError (f'Variable name entered, { t_column } , for t_column is not a column heading!' )
1152
- if mov_column not in mov_df .columns .tolist ():
1153
- raise KeyError (f'Variable name entered, { mov_column } , for mov_column is not a column heading!' )
1154
-
1155
1135
# Validate movement column contains boolean values
1156
1136
if not pd .api .types .is_bool_dtype (mov_df [mov_column ]):
1157
1137
raise TypeError (f'Column { mov_column } must contain boolean values' )
@@ -1257,10 +1237,6 @@ def interpolate_linear(self, variable: str, step_size: int, t_column: str = 't')
1257
1237
df = df.interpolate_linear('distance', step_size=60)
1258
1238
"""
1259
1239
# Input validation
1260
- if variable not in self .columns :
1261
- raise KeyError (f"Variable column '{ variable } ' not found in data" )
1262
- if t_column not in self .columns :
1263
- raise KeyError (f"Time column '{ t_column } ' not found in data" )
1264
1240
if step_size <= 0 :
1265
1241
raise ValueError ("Step size must be positive" )
1266
1242
@@ -1383,16 +1359,13 @@ def bin_time(self, variable: Union[str, List[str]], bin_secs: int,
1383
1359
df = df.bin_time(['x', 'y'], bin_secs=60, function=lambda x: x.max() - x.min())
1384
1360
"""
1385
1361
# Validate bin_secs
1386
- if not isinstance (bin_secs , ( int , float ) ) or bin_secs <= 0 :
1362
+ if not isinstance (bin_secs , int ) or bin_secs <= 0 :
1387
1363
raise ValueError ("bin_secs must be a positive number" )
1388
1364
1389
1365
if isinstance (variable , str ):
1390
1366
variable = [variable ]
1391
1367
1392
- # Validate column names
1393
- if t_column not in self .columns :
1394
- raise KeyError (f"Time column '{ t_column } ' not found in data" )
1395
-
1368
+ # Validate column names
1396
1369
for var in variable :
1397
1370
if not isinstance (var , str ):
1398
1371
raise TypeError (f"All variables must be strings, got { type (var )} for variable: { var } " )
@@ -1455,9 +1428,6 @@ def remove_first_last_bout(self, variable: str) -> "behavpy_core":
1455
1428
# Remove first/last sleep bouts that may be incomplete
1456
1429
df = df.remove_first_last_bout('asleep')
1457
1430
"""
1458
- # Validate inputs
1459
- if variable not in self .columns :
1460
- raise KeyError (f"Column '{ variable } ' not found in data" )
1461
1431
1462
1432
if not pd .api .types .is_bool_dtype (self [variable ]):
1463
1433
raise TypeError (f"Column '{ variable } ' must contain boolean values" )
@@ -1629,17 +1599,13 @@ def sleep_contiguous(self, mov_column: str = 'moving', t_column: str = 't', time
1629
1599
1630
1600
Raises:
1631
1601
KeyError: If mov_column or t_column not found in data
1602
+ ValueError: If time_window_length or min_time_immobile is not a positive number
1632
1603
1633
1604
Example:
1634
1605
# Identify sleep with 1-minute windows and 5-minute threshold
1635
1606
df = df.sleep_contiguous(time_window_length=60, min_time_immobile=300)
1636
1607
"""
1637
1608
1638
- if mov_column not in self .columns .tolist ():
1639
- raise KeyError (f'The movement column { mov_column } is not in the dataset' )
1640
- if t_column not in self .columns .tolist ():
1641
- raise KeyError (f'The time column { t_column } is not in the dataset' )
1642
-
1643
1609
# Validate time_window_length
1644
1610
if not isinstance (time_window_length , int ) or time_window_length <= 0 :
1645
1611
raise ValueError ("time_window_length must be a positive number" )
@@ -1712,14 +1678,6 @@ def feeding(self, food_position: str, dist_from_food: float = 0.05, micro_mov: s
1712
1678
if not 0 <= dist_from_food <= 1 :
1713
1679
raise ValueError ("dist_from_food must be between 0 and 1" )
1714
1680
1715
- # Check required columns exist
1716
- if x_position not in self .columns :
1717
- raise KeyError (f"x_position column '{ x_position } ' not found in data" )
1718
- if micro_mov not in self .columns :
1719
- raise KeyError (f"micro_mov column '{ micro_mov } ' not found in data" )
1720
- if 'region_id' not in self .meta .columns :
1721
- raise KeyError ("region_id column not found in metadata" )
1722
-
1723
1681
# Validate ROI lists
1724
1682
if not left_rois or not right_rois :
1725
1683
raise ValueError ("ROI lists cannot be empty" )
@@ -2157,23 +2115,57 @@ def get_hmm_raw(self, hmm: Any, variable: str = 'moving', t_bin: int = 60,
2157
2115
2158
2116
# PERIODOGRAM SECTION
2159
2117
2160
- def anticipation_score (self , variable : str , day_length : int = 24 , lights_off : int = 12 , t_column : str = 't' ) -> "behavpy_core" :
2118
+ def anticipation_score (self , variable : str , day_length : int = 24 , lights_off : int = 12 ,
2119
+ t_column : str = 't' ) -> "behavpy_core" :
2161
2120
"""
2162
- A method to find the anticipation score, a metric for measuring circadian rythmn. The score is calculated as the percentage
2163
- of activity in the last six hours before lights on or off that is present in the last 3 hours. A higher score indicates greater
2164
- anticipation.
2121
+ Calculate anticipation scores to measure circadian rhythm strength.
2122
+
2123
+ Computes an anticipation score by comparing activity levels in the 3 hours
2124
+ immediately before a transition (lights on/off) to activity in the 6 hours before.
2125
+ The score is calculated as: (activity in last 3hrs / activity in last 6hrs) * 100.
2126
+ Higher scores indicate stronger anticipatory behavior.
2165
2127
2166
2128
Args:
2167
- variable (str): The name of the column containing the variable that measures activity.
2168
- day_length (int, optional): The lenght in hours the experimental day is. Default is 24.
2169
- lights_off (int, optional): The time point when the lights are turned off in an experimental day,
2170
- assuming 0 is lights on. Must be number between 0 and day_lenght. Default is 12.
2171
-
2129
+ variable (str): Column name containing activity measurements to analyze
2130
+ day_length (int, optional): Length of experimental day in hours. Defaults to 24.
2131
+ lights_off (int, optional): Hour when lights turn off, measured from lights on (0).
2132
+ Must be between 0 and day_length. Defaults to 12.
2133
+ t_column (str, optional): Column containing timestamps in seconds.
2134
+ Defaults to 't'.
2135
+
2172
2136
Returns:
2173
- An amended behavpy dataframe with anticipation scores.
2174
- Note:
2175
- This method is used internally in the plot_anticipation_score method.
2137
+ behavpy_core: New behavpy object with addtional columns:
2138
+ - anticipation_score: Percentage of 6-hour activity in final 3 hours
2139
+ - phase: Either 'Lights On' or 'Lights Off'
2140
+
2141
+ Raises:
2142
+ KeyError: If variable or t_column not found in data
2143
+ ValueError: If lights_off not between 0 and day_length
2144
+
2145
+ Example:
2146
+ # Calculate anticipation scores for movement data
2147
+ df = df.anticipation_score('moving')
2148
+
2149
+ # Custom day length and lights-off time
2150
+ df = df.anticipation_score('moving', day_length=12, lights_off=6)
2151
+
2152
+ Notes:
2153
+ - Data is first wrapped to day_length hours using wrap_time()
2154
+ - NaN values are dropped before calculation
2155
+ - Scores are calculated separately for lights-on and lights-off transitions
2156
+ - Used internally by plot_anticipation_score()
2176
2157
"""
2158
+
2159
+ # Validate lights_off is between 0 and day_length
2160
+ if not 0 <= lights_off <= day_length :
2161
+ raise ValueError (f"lights_off ({ lights_off } ) must be between 0 and day_length ({ day_length } )" )
2162
+
2163
+ # Validate we have enough hours before transitions for calculation
2164
+ if lights_off < 6 :
2165
+ raise ValueError ("lights_off must be at least 6 hours after lights on for anticipation calculation" )
2166
+ if day_length - lights_off < 6 :
2167
+ raise ValueError ("lights_off must be at least 6 hours before end of day for anticipation calculation" )
2168
+
2177
2169
def _ap_score (total , small ):
2178
2170
try :
2179
2171
return (small / total ) * 100
0 commit comments