Skip to content

Commit 95769b3

Browse files
committed
math++
1 parent 50510b7 commit 95769b3

File tree

2 files changed

+36
-13
lines changed

2 files changed

+36
-13
lines changed

math_sup/methods_equation.pdf

3.54 KB
Binary file not shown.

math_sup/methods_equation.tex

+36-13
Original file line numberDiff line numberDiff line change
@@ -2,49 +2,72 @@
22
\usepackage{amsmath}
33
\begin{document}
44

5+
6+
\section*{Behavioural state}
7+
8+
\begin{align}
9+
B =
10+
\begin{cases}
11+
quiescence, & \text{if } V_{max} < T_V \forall i\\
12+
micro\text{-}movement, & \text{if } \sum^{i}{d(i, i-1)} < T_d\\
13+
walking, & \text{otherwise}
14+
\end{cases}
15+
\end{align}
16+
17+
18+
19+
Where,
20+
\begin{itemize}
21+
\item $V_{max}$ is the maximal velocity,
22+
\item $T_V$ the validated threshold under which immobility is scored,
23+
\item $d$ is the Euclidean distance,
24+
\item $T_d$ is a threshold on the cumulative distance 24mm above which walking is scored
25+
\end{itemize}
26+
27+
528
\section*{Rebound calculation}
629
Formally, the homoeostatic rebound $H_i$ of an individual $i$ was expressed as:
730

8-
\begin{align*}
31+
\begin{align}
932
H_i &= R_i - \hat{R_i} \\
10-
\hat{R_i} &= \alpha + \beta{} B_i\\
11-
\end{align*}
33+
\hat{R_i} &= \alpha + \beta{} B_i
34+
\end{align}
1235

1336

1437
Where,
1538
\begin{itemize}
1639
\item $\hat{R}$ is the \emph{predicted} sleep \emph{after} treatment ($ZT \in [0, 3]$),
1740
\item $R$ is the \emph{measured} sleep \emph{after} treatment ($ZT \in [0, 3]$),
18-
\item $B$ is the sleep measured \emph{before} after treatment ($ZT \in [0, 3]$), and
41+
\item $B$ is the sleep measured \emph{before} treatment ($ZT \in [0, 3]$), and
1942
\item $\alpha$ and $\beta$ are the coefficients of the linear regression $R_C = \alpha + \beta{B_C}$ on the control group $C$.
2043
\end{itemize}
2144

22-
\begin{align*}
23-
\alpha &= \bar{R_C} - beta\bar{B_C} \\
24-
\beta &= \frac{Cov(R_C, B_C)}{Var(B_C)}\\
25-
\end{align*}
45+
\begin{align}
46+
\alpha &= \bar{R_C} - \beta\bar{B_C} \\
47+
\beta &= \frac{Cov(R_C, B_C)}{Var(B_C)}
48+
\end{align}
2649

2750

2851
\section*{Relative position}
2952

30-
\begin{align*}
53+
\begin{align}
3154
position &= \frac{X - Q_{0.01}(X)}{Q_{0.99}(X - Q_{0.01}(X))}
32-
\end{align*}
55+
\end{align}
3356

3457
Where, $Q_n$ it the quantile function.
3558

36-
First and last percentiles were used instead of minimum and maximum to avoid the possible effect of spurious artefactual detections -- beyond physical limits of the tube.
59+
First and last percentiles were used instead of minimum and maximum to avoid the possible effect of spurious artefactual detections beyond physical limits of the tube.
3760
%Note that this method implies that the animals are in close proximity to each at least 1\% of observations, which
3861

3962

4063

4164
\section*{Hierarchical clustering}
4265

43-
\begin{align*}
66+
\begin{align}
4467
D(p,q) &= \frac{\sum_{t \in T}{BD_t(p_t,q_t)}}{|T|} \\
4568
BD_t(p_t,q_t) &= -\ln (BC(p_t,q_t))\\
4669
BC(p_t,q_t) &= \sum_{x\in X} \sqrt{p_t(x) q_t(x)}
47-
\end{align*}
70+
\end{align}
4871

4972

5073
Where,

0 commit comments

Comments
 (0)