|
2 | 2 | \usepackage{amsmath}
|
3 | 3 | \begin{document}
|
4 | 4 |
|
| 5 | + |
| 6 | +\section*{Behavioural state} |
| 7 | + |
| 8 | +\begin{align} |
| 9 | +B = |
| 10 | +\begin{cases} |
| 11 | +quiescence, & \text{if } V_{max} < T_V \forall i\\ |
| 12 | +micro\text{-}movement, & \text{if } \sum^{i}{d(i, i-1)} < T_d\\ |
| 13 | +walking, & \text{otherwise} |
| 14 | +\end{cases} |
| 15 | +\end{align} |
| 16 | + |
| 17 | + |
| 18 | + |
| 19 | +Where, |
| 20 | +\begin{itemize} |
| 21 | + \item $V_{max}$ is the maximal velocity, |
| 22 | + \item $T_V$ the validated threshold under which immobility is scored, |
| 23 | + \item $d$ is the Euclidean distance, |
| 24 | + \item $T_d$ is a threshold on the cumulative distance 24mm above which walking is scored |
| 25 | +\end{itemize} |
| 26 | + |
| 27 | + |
5 | 28 | \section*{Rebound calculation}
|
6 | 29 | Formally, the homoeostatic rebound $H_i$ of an individual $i$ was expressed as:
|
7 | 30 |
|
8 |
| -\begin{align*} |
| 31 | +\begin{align} |
9 | 32 | H_i &= R_i - \hat{R_i} \\
|
10 |
| -\hat{R_i} &= \alpha + \beta{} B_i\\ |
11 |
| -\end{align*} |
| 33 | +\hat{R_i} &= \alpha + \beta{} B_i |
| 34 | +\end{align} |
12 | 35 |
|
13 | 36 |
|
14 | 37 | Where,
|
15 | 38 | \begin{itemize}
|
16 | 39 | \item $\hat{R}$ is the \emph{predicted} sleep \emph{after} treatment ($ZT \in [0, 3]$),
|
17 | 40 | \item $R$ is the \emph{measured} sleep \emph{after} treatment ($ZT \in [0, 3]$),
|
18 |
| - \item $B$ is the sleep measured \emph{before} after treatment ($ZT \in [0, 3]$), and |
| 41 | + \item $B$ is the sleep measured \emph{before} treatment ($ZT \in [0, 3]$), and |
19 | 42 | \item $\alpha$ and $\beta$ are the coefficients of the linear regression $R_C = \alpha + \beta{B_C}$ on the control group $C$.
|
20 | 43 | \end{itemize}
|
21 | 44 |
|
22 |
| -\begin{align*} |
23 |
| -\alpha &= \bar{R_C} - beta\bar{B_C} \\ |
24 |
| -\beta &= \frac{Cov(R_C, B_C)}{Var(B_C)}\\ |
25 |
| -\end{align*} |
| 45 | +\begin{align} |
| 46 | +\alpha &= \bar{R_C} - \beta\bar{B_C} \\ |
| 47 | +\beta &= \frac{Cov(R_C, B_C)}{Var(B_C)} |
| 48 | +\end{align} |
26 | 49 |
|
27 | 50 |
|
28 | 51 | \section*{Relative position}
|
29 | 52 |
|
30 |
| -\begin{align*} |
| 53 | +\begin{align} |
31 | 54 | position &= \frac{X - Q_{0.01}(X)}{Q_{0.99}(X - Q_{0.01}(X))}
|
32 |
| -\end{align*} |
| 55 | +\end{align} |
33 | 56 |
|
34 | 57 | Where, $Q_n$ it the quantile function.
|
35 | 58 |
|
36 |
| -First and last percentiles were used instead of minimum and maximum to avoid the possible effect of spurious artefactual detections -- beyond physical limits of the tube. |
| 59 | +First and last percentiles were used instead of minimum and maximum to avoid the possible effect of spurious artefactual detections beyond physical limits of the tube. |
37 | 60 | %Note that this method implies that the animals are in close proximity to each at least 1\% of observations, which
|
38 | 61 |
|
39 | 62 |
|
40 | 63 |
|
41 | 64 | \section*{Hierarchical clustering}
|
42 | 65 |
|
43 |
| -\begin{align*} |
| 66 | +\begin{align} |
44 | 67 | D(p,q) &= \frac{\sum_{t \in T}{BD_t(p_t,q_t)}}{|T|} \\
|
45 | 68 | BD_t(p_t,q_t) &= -\ln (BC(p_t,q_t))\\
|
46 | 69 | BC(p_t,q_t) &= \sum_{x\in X} \sqrt{p_t(x) q_t(x)}
|
47 |
| -\end{align*} |
| 70 | +\end{align} |
48 | 71 |
|
49 | 72 |
|
50 | 73 | Where,
|
|
0 commit comments