-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy path2_alldata.py
executable file
·128 lines (99 loc) · 5.72 KB
/
2_alldata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
'''
This is a panel without graphs. It takes the basic information of selected flies and return the
data in two tables. The upper table returns averaged data of all selected flies. The lower table
gives specific data of single flies, day by day.
Multiple selections are possible
'''
#Default IMPORTED MODULES (DO NOT REMOVE)
from default_panels import *
class Panel(GridGrid):
'''
Here some variable specific to the PanelType
'''
def __init__(self, parent):
PanelProportion = [2,6]
sfLabels = ['Genotype', 'Day', 'Mon', 'Ch', 'alive', 'totSleep', 'rDS', 'rNS', 'AI', 'rD aLSE', 'rD aNSE', 'rN aLSE', 'rN aNSE', 'latency']
sfdataTypes = [gridlib.GRID_VALUE_STRING] * 4 + [gridlib.GRID_VALUE_NUMBER] *1 + [gridlib.GRID_VALUE_FLOAT + ':6,2'] * 10
AVGLabels = ['Genotype', 'Day', 'Mon', 'n(tot)','n(a)' , 'DaySleep', 'stdDV' ,'rDS', 'stdDV' ,'rNS', 'stdDV' , 'AI', 'stdDV', 'latency', 'stdDV']
AVGdataTypes = [gridlib.GRID_VALUE_STRING] * 3 + [gridlib.GRID_VALUE_NUMBER] *2 + [gridlib.GRID_VALUE_FLOAT + ':6,2'] * 10
GridGrid.__init__(self, parent, PanelProportion, [AVGLabels, sfLabels], [AVGdataTypes, sfdataTypes])
self.name = 'All Data'
self.compatible = 'all'
def Refresh(self):
'''
This function takes the coordinates coming upon tree item selection
and fills the grid with the data about all flies
'''
allSelections = GUI['dtList']
cDAM = GUI['cDAM']
single_fly_data = []
genotype_set, day_set, mon_set = set ([]), set ([]), set ([])
t0, t1 = self.limits.isActive() * self.limits.GetVals() or (None, None)
for n_sel, selection in enumerate(allSelections): #every selection carries a 5 digits coordinate
k, m, d, f = selection[1:] #cDAMnumber, monitor, day, fly
cSEL = cDAM[k]
fs, fe = cSEL.getFliesInInterval(m, f)
ds, de = cSEL.getDaysInInterval(d)
gen_t = cSEL.getGenotype(); genotype_set.add ( gen_t )
day_t = cSEL.getDate(d, format = 'mm/dd') or 'All'; day_set.add (day_t)
mon_t = cSEL.getMonitorName(m, d, f) or 'All'; mon_set.add ( mon_t )
#Here we gather the actual data
ax_t, s5_t = cSEL.filterbyStatus(ds,de,fs,fe,t0,t1)[0:2]
#Here we set the data for the lower grid (SINGLE FLIES)
for d in range(ds,de) or [ds]:
day_sl = cSEL.getDate(d, format = 'mm/dd')
for f in range(fs, fe) or [fs]:
mon_sl, ch_sl = cSEL.getMonitorFlyName(f)
# we need these two rows because fs and ds correspond to row 0 and col 0 of our matrix
fc = f - fs
dc = d - ds
alive = s5_t[dc,fc].sum() < 1430
AI = ax_t[dc,fc].sum() / (1440. - s5_t[dc,fc].sum())
len_sleep_episodes_day = all_sleep_episodes (s5_t[dc,fc], 0, 720)
len_sleep_episodes_night = all_sleep_episodes (s5_t[dc,fc], 721, 1440)
num_sleep_episodes_day = number_sleep_episodes (s5_t[dc,fc], 0, 720)
num_sleep_episodes_night = number_sleep_episodes (s5_t[dc,fc], 721, 1440)
latency = sleep_latency(s5_t[dc,fc], lightsoff=720)
single_fly_data.append([gen_t, day_sl, mon_sl, ch_sl, alive,
s5_t[dc,fc].sum(),
s5_t[dc,fc,0:720].sum(),
s5_t[dc,fc,720:1440].sum(),
AI,
average( len_sleep_episodes_day ),
average( num_sleep_episodes_day ),
average( len_sleep_episodes_night ),
average( num_sleep_episodes_night ),
latency
])
#Here we add data to the pool in case we are dealing with multiple selections
if n_sel == 0:
s5 = s5_t
ax = ax_t
else:
s5 = concatenate ((s5, s5_t), axis=0)
ax = concatenate ((ax, ax_t), axis=0)
## OUT OF THE LOOP ##
#Here we set the data for the upper grid (AVERAGE)
num_flies = s5.shape[1]
num_alive = (s5.sum(axis=2)<1430).all(axis=0).sum()
dist_tot_sleep_by_fly = average (SleepAmountByFly (s5, t0, t1), axis=0)
dist_day_sleep_by_fly = average (SleepAmountByFly (s5, t0=0, t1=720), axis=0)
dist_night_sleep_by_fly = average (SleepAmountByFly (s5, t0=720, t1=1440), axis=0)
dist_AI_by_fly = average (ActivityIndexByFly(ax, s5), axis=0)
latency = sleep_latency(s5, 720)
AVGdata = ( [list2str(genotype_set), list2str(day_set), list2str(mon_set),
num_flies, num_alive,
average(dist_tot_sleep_by_fly), std(dist_tot_sleep_by_fly),
average(dist_day_sleep_by_fly), std(dist_day_sleep_by_fly),
average(dist_night_sleep_by_fly), std(dist_night_sleep_by_fly),
average(dist_AI_by_fly), std(dist_AI_by_fly),
average(latency),std(latency),
0,0,0,0
] )
#this places the data in the table
if GUI['holdplot']:
self.sheet[0].AddRow(AVGdata)
self.sheet[1].AddRow(single_fly_data)
else:
self.sheet[0].SetData([AVGdata])
self.sheet[1].SetData(single_fly_data)