-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcpython_proto.pyx
88 lines (62 loc) · 2.51 KB
/
cpython_proto.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
__author__ = 'quentin'
cimport numpy as np
import numpy as np
DTYPE = np.float
# "ctypedef" assigns a corresponding compile-time type to DTYPE_t. For
# every type in the numpy module there's a corresponding compile-time
# type with a _t-suffix.
ctypedef np.float_t DTYPE_t
# "def" can type its arguments but not have a return type. The type of the
# arguments for a "def" function is checked at run-time when entering the
# function.
#
def embed_seq(X,Tau,D):
N =len(X)
if D * Tau > N:
raise ValueError("Cannot build such a matrix, because D * Tau > N")
if Tau<1:
raise ValueError("Tau has to be at least 1")
Y=np.zeros((D, N - (D - 1) * Tau))
for i in range(D):
Y[i] = X[i *Tau : i*Tau + Y.shape[1] ]
return Y.T
def in_range(np.ndarray Template, np.ndarray Scroll, float Distance):
cdef int N = len(Template)
cdef int i
for i in range(0, N):
if abs(Template[i] - Scroll[i]) > Distance:
return False
return True
def ap_entropy(np.ndarray X, int M, float R):
cdef int N = len(X)
cdef np.ndarray Em = embed_seq(X, 1, M)
cdef np.ndarray Emp = embed_seq(X, 1, M + 1)
cdef np.ndarray Cm = np.zeros(N - M + 1, dtype=DTYPE)
cdef np.ndarray Cmp = np.zeros(N - M, dtype=DTYPE)
# # in case there is 0 after counting. Log(0) is undefined.
cdef int i,j
for i in xrange(0, N - M):
for j in xrange(i, N - M): # start from i, self-match counts in ApEn
# print i,j
# print np.array([Em[i], Em[j]])
if in_range(Em[i], Em[j], R):
Cm[i] += 1 ### Xin Liu
Cm[j] += 1
if np.abs(Emp[i][-1] - Emp[j][-1]) <= R: # check last one
Cmp[i] += 1
Cmp[j] += 1
if in_range(Em[i], Em[N-M], R):
Cm[i] += 1
Cm[N-M] += 1
# try to count Cm[j] and Cmp[j] as well here
# if max(abs(Em[N-M]-Em[N-M])) <= R: # index from 0, so N-M+1 is N-M v 0.01b_r1
# if in_range(Em[i], Em[N - M], R): # for Cm, there is one more iteration than Cmp
# Cm[N - M] += 1 # cross-matches on Cm[N - M]
Cm[N - M] += 1 # Cm[N - M] self-matches
# import code;code.interact(local=locals())
Cm /= (N - M +1 )
Cmp /= ( N - M )
# import code;code.interact(local=locals())
Phi_m, Phi_mp = sum(np.log(Cm)), sum(np.log(Cmp))
Ap_En = (Phi_m - Phi_mp) / (N - M)
return Ap_En