-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathelly_df.py
64 lines (43 loc) · 1.44 KB
/
elly_df.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
__author__ = 'quentin'
import glob
import os
import pandas as pd
import pyrem as pr
from multiprocessing import Pool
import numpy as np
DATA_FILE_PATTERN= "/data/pyrem/Ellys/pkls/*.pkl"
SAMPLING_RATE = 200
OUT_CSV = "/data/pyrem/Ellys/all_features.csv"
LAG_WINDOW = 5
N_PROCESSES = 6
# DATA_FILE_PATTERN= "/data/pyrem/Ellys/pkls/GFP_*A*.pkl"
# OUT_CSV = "/tmp/all_features.csv"
def features_one_file(f):
file_name = os.path.basename(f).split(".")[0]
treatment, animal = file_name.split("_")
pol = pr.polygraph_from_pkl(f)
pol = pol.normalise()
pol = pr.preprocess_eegs(pol)
print "processing " + f
tmp_df = feature_factory.make_features_for_epochs(pol,10,LAG_WINDOW, add_major_annotations=True)
tmp_df["animal"] = animal
tmp_df["treatment"] = treatment
return tmp_df
if __name__ == "__main__":
files = glob.glob(DATA_FILE_PATTERN)
feature_factory = pr.features.FeatureFactory([
pr.features.PeriodFeatures(),
pr.features.PowerFeatures(),
pr.features.NonLinearFeatures(),
# pr.features.EntropyFeatures(),
pr.features.HjorthFeatures(),
pr.features.WaveletsFeaturesDB4(),
pr.features.MSEFeatures(),
])
if N_PROCESSES > 1 :
p = Pool(N_PROCESSES)
dfs = p.map(features_one_file, sorted(files))
else:
dfs = map(features_one_file, sorted(files))
out_df = pd.concat(dfs)
out_df.to_csv(OUT_CSV, float_format="%e")