-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmastertable_generation.R
200 lines (143 loc) · 6.03 KB
/
mastertable_generation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
rm(list=ls())
library(data.table)
source("~/Documents/snail_back_pack/R/funs.R")
RESULT_DIR <-"~/Documents"
MASTER_FILE <- "~/Documents/snail_back_pack/experiments/snail_temperature_experiment/results/master_table.csv"
makedt_for_animal <- function(subdt, fs=5){
heart_dt <- fread(subdt$heart_file)
temp_dt <- fread(subdt$temp_file)
out_t <- seq(from=floor(min(heart_dt$V1)), to=round(max(heart_dt$V1)), by= 1/fs)
li_heart <- approx(x=heart_dt$V1, y=heart_dt$V2, xout=out_t, method='linear')
li_temp <- approx(x=temp_dt$V1, y=temp_dt$V2, xout=out_t, method='linear')
#map here
out_dt <- data.table(t=li_heart$x, y=li_heart$y, temp=li_temp$y)
fin_dt <- na.omit(out_dt)
fin_dt
}
master_table_v1 <- data.table(read.csv(MASTER_FILE, header=T, na.strings=" ", skip=1))
master_table_v2 <- na.omit(master_table_v1[1:16])
master_table_v2[, ID:= as.integer(as.character(ID))]
master_table_v2[, heart_file:= paste(RESULT_DIR,gsub("\\s", "", heart_file),sep="/")]
master_table_v2[, temp_file:= paste(RESULT_DIR,gsub("\\s", "", temp_file),sep="/")]
#FIXME
master_table_v2 <- master_table_v2[ID<23, ]
setkey(master_table_v2,ID)
#TO LOOK AT
main_dt <- master_table_v2[,makedt_for_animal(.SD),by="ID"]
tmin <- floor(main_dt$t /60) + 1
main_dt2 <-cbind(main_dt, data.table(tmin))
main_dt3 <- split(main_dt2, list(main_dt2$ID, main_dt2$tmin))
main_dt4 <- lapply(main_dt3, function(m){
mean_temp <- mean(m$temp)
sd_temp <- sd(m$temp)
sd_mean <- cbind(mean_temp, sd_temp)
main_temp <- cbind(m, sd_mean)
main_temp
})
#TODO: lapply or something like
result21 <- main_dt2[ID== 21,list(
freq = freq_fun_pspec_bwfilter(y,fs=5),
temp = mean(temp),
temp_sd = sd(temp))
,by=c("ID","tmin")]
result21_runmed <- main_dt2[ID== 21,list(
freq = freq_fun_pspec_runmed(y,fs=5, 43),
temp = mean(temp),
temp_sd = sd(temp))
,by=c("ID","tmin")]
result21_runmed_bwfilter <- main_dt2[ID== 21,list(
freq = freq_fun_pspec_bwfilter_runmed(y,fs=5, 43),
temp = mean(temp),
temp_sd = sd(temp))
,by=c("ID","tmin")]
result21_bwfilter5 <- main_dt2[ID== 21,list(
freq = freq_fun_pspec_bwfilter5(y,fs=5),
temp = mean(temp),
temp_sd = sd(temp))
,by=c("ID","tmin")]
#testing
results_dt <- rbind(result9, result10, result11, result12, result13, result14,
result15, result16, result17, result18, result19, result20, result21, result22)
results_half <- rbind(result11, result13, result15, result17, result19, result21)
results_9_14 <- rbind(result9, result10, result11, result12, result13, result14)
test_m <- mean(test$temp)
test_sd <- sd(test$temp)
ntest <- cbind(test, rep(test_m), rep(test_sd))
#TOFIX: some of the main_dt3 subtables don't have 300 values, remove?
meth_pspec_bwfilter = apply_freq_meth(chunks=main_dt3,
freq_fun_pspec_bwfilter, fs=5)
plot(freq ~ temp,resu)
> plot(freq ~ tmin,resu)
> plot(temp ~ tmin,resu)
> plot(temp ~ log10(tmin),resu)
> plot(temp ~ tmin,resu)
> plot(temp ~ tmin,resu[tmin>23850600])
tempplt<- plot(temp ~ tmin,resu[tmin>23862200],type='l')
freqplt<- plot(freq ~ tmin,resu[tmin>23862200], type='l')
tfplt<- plot(freq ~ temp,resu[temp>20])
bwf <- bwfilter(y,freq=10,drift=TRUE);plot(bwf$trend, type="l",col='red',lty=2,lwd=3);lines(y)
> bwf <- bwfilter(y,freq=10,nfix=2,drift=TRUE);plot(bwf$trend, ylim=c(325,350),type="l",col='red',lty=2,lwd=3);lines(y)
> bwf <- bwfilter(y,freq=10,nfix=3,drift=TRUE);plot(bwf$trend, type="l",col='red',lty=2,lwd=3);lines(y)
> bwf <- bwfilter(y,freq=10,nfix=2,drift=TRUE);plot(bwf$trend, type="l",col='red',lty=2,lwd=3);lines(y)
plot(y-bwf$trend)
> acf(y-bwf$trend,max)
max max.col
> acf(y-bwf$trend,lag.max=50)
> acf(y,lag.max=50)
y <- ts(y,f=fs)
pdf("/tmp/bwftrend_plot.pdf",w=16,h=9)
bwf <- bwfilter(y,freq=10,nfix=2,drift=TRUE);plot(bwf$trend, ylim=c(325,350), xlab="Time (seconds)"
, ylab="Light intensity (arbitrary units)", type="l",col='red',lty=2,lwd=3);lines(y)
title("Original signal with a butterworth filter applied")
dev.off()
pdf("/tmp/bwf_plot.pdf",w=16,h=9)
plot(y-bwf$trend, xlab="Time (seconds)", ylab="Light intensity (arbitrary units)")
title("Original signal with a butterworth filter applied")
dev.off()
rmed <- runmed(y, k=43)
ny <- y-rmed
nyb <- y - bwf$trend
attr(ny,"k") <- NULL
pdf("/tmp/rmed_plot.pdf",w=16,h=9)
plot(ny, type="l", xlab="Time (seconds)", ylab="Light intensity (arbitrary units)")
title("Original signal with a running median filter applied")
dev.off()
pdf("/tmp/rmedtrend_plot.pdf",w=16,h=9)
plot(rmed, type="l", xlab="Time (seconds)", ylab="Light intensity (arbitrary units)",col='red',lty=2,lwd=3);lines(y)
title("Original signal with a running median filter applied")
dev.off()
pdf("/tmp/rmedtrend_plot.pdf",w=16,h=9)
plot(rmed, type="l", xlab="Time (seconds)", ylab="Light intensity (arbitrary units)")
title("Original signal with a running median filter applied")
dev.off()
pdf("/tmp/bwfpspec_plot.pdf",w=16,h=9)
pspec_test <- pspectrum(bwf$trend)
plot(pspec_test, xlab="Frequency (Hz)", ylab="Spectrum", main="Power spectrum from band-pass filtered signal")
dev.off()
pdf("/tmp/rmedpspec_plot.pdf",w=16,h=9)
pspec_test <- pspectrum(ny)
plot(pspec_test, xlab="Frequency (Hz)", ylab="Spectrum", main="Power spectrum from running median filtered signal")
dev.off()
pdf("/tmp/rmedfpeaks_plot.pdf",w=16,h=9)
f <- seewave::fpeaks(pspec_test$spec, f=5,nmax=1, plot=T)
abline(v=(f[1,1]), col="red")
dev.off()
pdf("/tmp/bwffpeaks_plot.pdf",w=16,h=9)
pspec_test <- pspectrum(nyb)
f <- seewave::fpeaks(pspec_test$spec, f=5,nmax=1, plot=T)
abline(v=(f[1,1]), col="red")
dev.off()
######freq pdfs
pdf("/tmp/freqc_bwf3.pdf",w=16,h=9)
pltpspec
dev.off()
pltpspec <- ggplot(long_df,aes(y = fc, x =of,colour=method,shape=method)) +
geom_point() + geom_smooth(method="lm", fill=NA) +
coord_cartesian(xlim = c(0, xmax+0.25), ylim = c(0, ymax+0.25)) +
geom_abline(group=1, colour="grey") +
labs(x = "Reference frequency",
y = "Generated frequency",
title = "Calculated reference frequency vs algorithm generated frequency")
pdf("/tmp/bwffpeaks_plot.pdf",w=16,h=9)
f<-seewave::fpeaks(pspec_test$spec, f=5,nmax=1, plot=T, title=F)
abline(v=(f[1,1]), col="red")