Skip to content

Commit a30d92d

Browse files
committed
added file for plots
1 parent bde2e35 commit a30d92d

File tree

4 files changed

+107
-16
lines changed

4 files changed

+107
-16
lines changed

R/data_frame_selection.R

+7-14
Original file line numberDiff line numberDiff line change
@@ -4,12 +4,15 @@ library(psd)
44
library(mFilter)
55
library(ggplot2)
66
library(data.table)
7+
library(plotly)
78
source("~/Documents/snail_back_pack/R/funs.R")
89
DATA_FILE <- "/home/alysia/Documents/snail_back_pack/R/ref_data_heart_snail.txt"
910
REF_FILE <- "/home/alysia/Documents/ref.csv"
10-
SAMPLING_FREQ <- 5 # in Hz
1111

12+
SAMPLING_FREQ <- 5 # in Hz
1213

14+
DATA_FILE <- "/home/alysia/Documents/heart_021.csv"
15+
REF_FILE <- "/home/alysia/Documents/snail_back_pack/experiments/snail_minute_slices/snail_21minute.csv"
1316

1417

1518

@@ -41,16 +44,6 @@ lapply(list_of_mins, function(l){
4144
dev.off()
4245

4346

44-
pdf("/tmp/proto_plot.pdf",w=16,h=9)
45-
sapply(result21, function(l){
46-
y <- l["freq"]
47-
t0 <- l["tmin"][1]
48-
title <- paste("pspec_bwfilter;", t0)
49-
freq_fun_pspec_bwfilter(y, fs=5, dev=T, main=title)
50-
})
51-
dev.off()
52-
53-
5447
pdf("plot.pdf",w=16,h=9)
5548
lapply(list_of_mins, function(sdf){
5649
title <- sdf$min[1]
@@ -62,9 +55,9 @@ dev.off()
6255
#list of results from methods and ggplot generation
6356
results <- list(
6457

65-
meth_pspec = apply_freq_meth(chunk=list_of_mins, freq_fun_pspec, fs=5),
66-
meth_pspec_bwfilter = apply_freq_meth(chunks=list_of_mins, freq_fun_pspec_bwfilter, fs=5),
67-
meth_pspec_runmed = apply_freq_meth(chunk=list_of_mins, freq_fun_pspec_runmed, fs=5, k=43)
58+
#pspec = apply_freq_meth(chunk=list_of_mins, freq_fun_pspec, fs=5)
59+
pspec_bwfilter = apply_freq_meth(chunks=list_of_mins, freq_fun_pspec_bwfilter, fs=5),
60+
pspec_runmed = apply_freq_meth(chunk=list_of_mins, freq_fun_pspec_runmed, fs=5, k=43)
6861
)
6962

7063

R/funs.R

+23-2
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ freq_fun_pspec_runmed <- function(y, fs, k){
5656

5757
#generates original spectra and filtered spectra
5858
freq_fun_bwfilter <- function(y, fs, dev=TRUE,...){
59-
bwf <- bwfilter(y,freq=4,drift=TRUE)
59+
bwf <- bwfilter(y,freq=3,drift=TRUE)
6060

6161
if(dev == T){
6262
plot(y,type="l",...)
@@ -67,7 +67,7 @@ freq_fun_bwfilter <- function(y, fs, dev=TRUE,...){
6767

6868
#generates, original spectra, power spectrum, and fpeaks
6969
freq_fun_pspec_bwfilter <- function(y, fs, dev=TRUE,...){
70-
bwf <- bwfilter(y,freq=78,drift=TRUE)
70+
bwf <- bwfilter(y,freq=3,drift=TRUE)
7171
pspec_test <- pspectrum(bwf$trend, x.frqsamp=fs)
7272
f <- seewave::fpeaks(pspec_test$spec, f=fs,nmax=1, plot=T, title=F)
7373
if(any(is.na(f))){
@@ -100,6 +100,27 @@ freq_fun_pspec_bwfilter_runmed <- function(y, fs, k, dev=TRUE,...){
100100
return(f[1,1]*1000)
101101
}
102102

103+
#freq_fun_pspec_iirfilter_pspec<- function(y, fs, k, dev=TRUE,...){
104+
105+
#pspec_test <- pspectrum(bwf$trend, x.frqsamp=fs)
106+
#f <- seewave::fpeaks(pspec_test$spec, f=fs,nmax=1, plot=T, title=F)
107+
#if(any(is.na(f))){
108+
# return(.0 + NA)
109+
# }
110+
111+
#return(f[1,1]*1000)
112+
#}
113+
114+
115+
116+
#f1 <- iir(sines, fl = 0.5, fh = 1.5, type = "BP", proto = "BU")
117+
#lines(f1, col = "blue")
118+
119+
120+
121+
122+
123+
103124
apply_freq_meth <- function(chunks, FUN, fs, ...){
104125
sapply(chunks, function(d, fs, ... ){
105126
FUN(d$y, fs, ...)

R/plots.R

+77
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,77 @@
1+
2+
3+
4+
5+
6+
7+
8+
9+
10+
11+
12+
13+
14+
15+
16+
17+
18+
19+
20+
21+
22+
23+
py <- plotly()
24+
25+
model <- lm(fc ~ reof + factor(method), data=long_df)
26+
grid <- with(long_df, expand.grid(
27+
reof = seq(min(reof), max(reof), length = 3),
28+
method = levels(factor(method))
29+
))
30+
31+
grid$fc <- stats::predict(model, newdata=grid)
32+
33+
viz2 <- qplot(reof, fc, data=long_df, colour=factor(method)) +
34+
geom_line(data=grid)
35+
out <- py$ggplotly(viz2, kwargs=list(filename="gg-line-scatter", fileopt="overwrite"))
36+
plotly_url <- out$response$url
37+
38+
39+
40+
py <- plotly()
41+
42+
model <- lm(mpg ~ wt + factor(cyl), data=mtcars)
43+
grid <- with(mtcars, expand.grid(
44+
wt = seq(min(wt), max(wt), length = 20),
45+
cyl = levels(factor(cyl))
46+
))
47+
48+
grid$mpg <- stats::predict(model, newdata=grid)
49+
50+
viz2 <- qplot(wt, mpg, data=mtcars, colour=factor(cyl)) +
51+
geom_line(data=grid)
52+
out <- py$ggplotly(viz2, kwargs=list(filename="gg-line-scatter", fileopt="overwrite"))
53+
plotly_url <- out$response$url
54+
55+
56+
57+
58+
pltpspec <- ggplot(long_df,aes(y = fc, x =reof,colour=method,shape=method)) +
59+
geom_point() + geom_smooth(method="lm", fill=NA) +
60+
coord_cartesian(xlim = c(0, xmax+0.25), ylim = c(0, ymax+0.25)) +
61+
geom_abline(group=1, colour="grey")
62+
63+
64+
65+
66+
67+
68+
69+
70+
71+
72+
73+
74+
75+
76+
77+

plot.pdf

3.53 KB
Binary file not shown.

0 commit comments

Comments
 (0)