Skip to content

akarales/RTSAP

Repository files navigation

RTSAP - Real-Time Streaming Analytics Platform

RTSAP Logo

Python Version Conda License Kubernetes Minikube Version Website Twitter

🎯 Overview

RTSAP is a comprehensive real-time streaming analytics platform designed for financial markets, combining high-performance stream processing with advanced analytics capabilities. Built on modern cloud-native technologies, it provides scalable, reliable, and low-latency data processing for financial analysis.

πŸ“œ Version History

V0.1-alpha (Current)

  • Major Features:

    • Real-time stream processing with Kafka and Flink
    • Time-series data storage with TimescaleDB
    • Kubernetes-based deployment architecture
    • Basic financial analytics pipeline
  • Core Components:

    • Stream ingestion system
    • Real-time processing engine
    • Time-series database integration
    • Analytics API endpoints

πŸ” Demo

RTSAP Architecture

πŸš€ Key Features

Core Capabilities

  • Stream Processing

    • Real-time data ingestion using Apache Kafka
    • Complex event processing with Apache Flink
    • Low-latency analytics pipeline
  • Data Storage

    • Time-series optimization with TimescaleDB
    • Document storage using MongoDB
    • Transactional data in PostgreSQL
  • Analytics Engine

    • Real-time financial calculations
    • Historical data analysis
    • Machine learning integration
    • Interactive visualization

Technical Features

  • Scalability

    • Kubernetes-based orchestration
    • Horizontal scaling capabilities
    • Resource optimization
  • Reliability

    • Fault-tolerant architecture
    • Data replication
    • Automated recovery

🚦 System Requirements

Minimum Requirements

  • Ubuntu 24.04
  • 8GB RAM
  • 4 CPU cores
  • 50GB storage
  • Docker installed

Recommended

  • 16GB+ RAM
  • 8+ CPU cores
  • 100GB+ SSD storage
  • NVIDIA GPU (optional)
  • Kubernetes cluster

πŸ› οΈ Installation

Installing Conda

# Download Miniconda installer
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

# Make installer executable
chmod +x Miniconda3-latest-Linux-x86_64.sh

# Run installer
./Miniconda3-latest-Linux-x86_64.sh

# Initialize conda for your shell
conda init bash  # or conda init zsh if you use zsh

Setting Up Conda Environment

# Create conda environment for RTSAP
conda create -n rtsap python=3.9
conda activate rtsap

# Install core dependencies
conda install -c conda-forge \
    numpy \
    pandas \
    scikit-learn \
    matplotlib \
    seaborn \
    jupyterlab \
    ipykernel \
    fastapi \
    uvicorn \
    python-dotenv \
    sqlalchemy \
    psycopg2 \
    pymongo \
    confluent-kafka \
    requests \
    pytest

# Install ML libraries (if needed)
conda install -c pytorch pytorch torchvision torchaudio cudatoolkit=11.8

# Install additional packages not available in conda
pip install kafka-python timescale

Installing System Dependencies

# Update package list
sudo apt update

# Install Docker
sudo apt install -y docker-ce docker-ce-cli containerd.io
sudo usermod -aG docker $USER

# Install Minikube
curl -LO https://github.com/kubernetes/minikube/releases/download/v1.33.0/minikube-linux-amd64
sudo install minikube-linux-amd64 /usr/local/bin/minikube

# Install kubectl
curl -LO "https://dl.k8s.io/release/v1.30.0/bin/linux/amd64/kubectl"
sudo install kubectl /usr/local/bin/

# Install Helm
curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | bash

Environment Verification

# Verify conda environment
conda list

# Verify Python installation
python -c "import sys; print(sys.version)"

# Verify key packages
python -c "import numpy; import pandas; import fastapi; print('All key packages installed')"

# Verify CUDA (if using GPU)
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"

πŸ“ˆ Project Structure

rtsap/
β”œβ”€β”€ config/              # Configuration files
β”‚   β”œβ”€β”€ .env            # Environment variables
β”‚   └── config.yaml     # Application configuration
β”œβ”€β”€ src/                # Source code
β”‚   β”œβ”€β”€ api/            # FastAPI application
β”‚   β”œβ”€β”€ ingestion/      # Data ingestion scripts
β”‚   └── processing/     # Stream processing logic
β”œβ”€β”€ notebooks/          # Jupyter notebooks
β”œβ”€β”€ scripts/            # Utility scripts
β”œβ”€β”€ data/              # Data files
β”œβ”€β”€ models/            # ML models
β”œβ”€β”€ tests/             # Test files
└── environment.yml    # Conda environment file

πŸ’» Usage

Starting the Platform

# Start Minikube
minikube start --cpus 8 --memory 40960

# Enable addons
minikube addons enable metrics-server
minikube addons enable dashboard

# Deploy core services
helm install my-kafka bitnami/kafka
helm install my-timescaledb timescale/timescaledb-single

Development Workflow

# Activate environment
conda activate rtsap

# Start the API server
cd src/api
uvicorn main:app --reload

# Run tests
pytest tests/

# Start Jupyter Lab
jupyter lab

πŸ”§ Advanced Configuration

Environment Variables

Create a .env file in your project root:

# .env
PYTHONPATH=${PYTHONPATH}:${PWD}
CONDA_ENV_PATH=$(conda info --base)/envs/rtsap
POSTGRES_HOST=my-postgres-postgresql.default.svc.cluster.local
TIMESCALEDB_HOST=my-timescaledb.default.svc.cluster.local
KAFKA_BOOTSTRAP_SERVERS=my-kafka.default.svc.cluster.local:9092

Kubernetes Configuration

# config.yaml
resources:
  requests:
    memory: "2Gi"
    cpu: "1000m"
  limits:
    memory: "4Gi"
    cpu: "2000m"

πŸ›£οΈ Roadmap

Short Term

  • Add machine learning pipeline
  • Implement automated backtesting
  • Enhance monitoring system

Long Term

  • Add distributed processing
  • Implement advanced analytics
  • Create web interface

πŸ’‘ Use Cases

  • Market Analysis: Real-time market data processing
  • Risk Management: Live risk calculation and monitoring
  • Algorithmic Trading: Strategy backtesting and execution
  • Compliance: Transaction monitoring and reporting

πŸ” Security

  • Role-based access control
  • Encrypted data transmission
  • Secure credential management
  • Audit logging

🀝 Contributing

Contributions are welcome! Please see our Contributing Guidelines.

  1. Fork the repository
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Open a Pull Request

πŸ” Troubleshooting

Common Issues

  1. Conda environment issues
# Reset conda environment
conda deactivate
conda env remove -n rtsap
conda env create -f environment.yml
  1. Kubernetes connectivity
# Check cluster status
minikube status
kubectl cluster-info
  1. Service issues
# Check running pods
kubectl get pods
kubectl describe pod <pod-name>

πŸ“š Documentation

πŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ‘€ Author

Alex Karales

🌍 Community

πŸ™ Acknowledgments

  • Apache Kafka for streaming capabilities
  • TimescaleDB for time-series storage
  • Kubernetes for orchestration
  • FastAPI for API development
  • Conda community for package management

πŸ“ˆ Project Status

RTSAP is under active development. Check our Project Board for planned features and current progress.

πŸ‘₯ Support


Karales.com

Made with ❀️ by Alex Karales

About

Real Time Streaming Analytics Platform

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published