Skip to content

Mock Http and LLM servers, inspired by wiremock, but with response streaming and SSE

License

Notifications You must be signed in to change notification settings

kpavlov/ai-mocks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mokksy and AI-Mocks

Maven Central Kotlin CI GitHub branch status Codacy Badge Codacy Coverage codecov

Documentation API Reference GitHub License Kotlin

Mokksy and AI-Mocks are mock HTTP and LLM (Large Language Model) servers inspired by WireMock, with support for response streaming and Server-Side Events (SSE). They are designed to build, test, and mock OpenAI API responses for development purposes.

Mokksy

mokksy-mascot-256.png

Mokksy is a mock HTTP server built with Kotlin and Ktor. It addresses the limitations of WireMock by supporting true SSE and streaming responses, making it particularly useful for integration testing LLM clients.

Core Features

  • Flexibility to control server response directly via ApplicationCall object.
  • Built with Kotest Assertions.
  • Fluent modern Kotlin DSL API.
  • Support for simulating streamed responses and Server-Side Events (SSE) with delays between chunks.
  • Support for simulating response delays.

Example Usages

Responding with Predefined Responses

// given
val expectedResponse =
  // language=json
  """
    {
        "response": "Pong"
    }
    """.trimIndent()

mokksy.get {
  path = beEqual("/ping")
  containsHeader("Foo", "bar")
} respondsWith {
  body = expectedResponse
}

// when
val result = client.get("/ping") {
  headers.append("Foo", "bar")
}

// then
assertThat(result.status).isEqualTo(HttpStatusCode.OK)
assertThat(result.bodyAsText()).isEqualTo(expectedResponse)

POST Request

// given
val id = Random.nextInt()
val expectedResponse =
  // language=json
  """
    {
        "id": "$id",
        "name": "thing-$id"
    }
    """.trimIndent()

mokksy.post {
  path = beEqual("/things")
  bodyContains("\"$id\"")
} respondsWith {
  body = expectedResponse
  httpStatus = HttpStatusCode.Created
  headers {
    // type-safe builder style
    append(HttpHeaders.Location, "/things/$id")
  }
  headers += "Foo" to "bar" // list style
}

// when
val result =
  client.post("/things") {
    headers.append("Content-Type", "application/json")
    setBody(
      // language=json
      """
            {
                "id": "$id"
            }
            """.trimIndent(),
    )
  }

// then
assertThat(result.status).isEqualTo(HttpStatusCode.Created)
assertThat(result.bodyAsText()).isEqualTo(expectedResponse)
assertThat(result.headers["Location"]).isEqualTo("/things/$id")
assertThat(result.headers["Foo"]).isEqualTo("bar")

Server-Side Events (SSE) Response

Server-Side Events (SSE) is a technology that allows a server to push updates to the client over a single, long-lived HTTP connection, enabling real-time updates without requiring the client to continuously poll the server for new data.

mokksy.post {
  path = beEqual("/sse")
} respondsWithSseStream {
  flow =
    flow {
      delay(200.milliseconds)
      emit(
        ServerSentEvent(
          data = "One",
        ),
      )
      delay(50.milliseconds)
      emit(
        ServerSentEvent(
          data = "Two",
        ),
      )
    }
}

// when
val result = client.post("/sse")

// then
assertThat(result.status)
  .isEqualTo(HttpStatusCode.OK)
assertThat(result.contentType())
  .isEqualTo(ContentType.Text.EventStream.withCharsetIfNeeded(Charsets.UTF_8))
assertThat(result.bodyAsText())
  .isEqualTo("data: One\r\ndata: Two\r\n")

AI-Mocks

AI-Mocks is a specialized mock server implementations (e.g., mocking OpenAI API) built using Mokksy.

It supports mocking following LLMs:

  1. OpenAI - ai-mocks-openai
  2. Anthropic - ai-mocks-anthropic

NB! Not all API endpoints and parameters are supported!

How to build

Building project locally:

gradle build

or using Make:

make

Contributing

I do welcome contributions! Please see the Contributing Guidelines for details.

Enjoying LLM integration testing? ❤️

Buy me a Coffee