Skip to content

saforem2/ezpz

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ‹ ezpz

Write once, run anywhere

Train across all your {NVIDIA, AMD, Intel, MPS, ...} accelerators, ezpz πŸ‹.

See πŸ‹ ezpz docs for additional information.

🐣 Getting Started

  1. πŸ–οΈ Setup environment1 (see Shell Environment):

    source <(curl -L https://bit.ly/ezpz-utils) && ezpz_setup_env
  2. 🐍 Install ezpz (see Python API):

    python3 -m pip install "git+https://github.com/saforem2/ezpz"
  3. πŸš€ Launch python from python using ezpz-launch (see Launch).

    # arbitrary python string, for example
    ezpz-launch -c "'import ezpz; ezpz.setup_torch()'"
    Examples, launching:
    • Any *.py module (ezpz/test_dist.py, in this example):

      ezpz-launch -m ezpz.test_dist
      Output:
      #[🐍 aurora_nre_models_frameworks-2025.0.0](πŸ‘» aurora_nre_models_frameworks-2025.0.0)
      #[/f/d/f/p/s/ezpz][🌱 saforem2/dev][πŸ“¦πŸ€·βœ“] [⏱️ 49s]
      #[06/02/25 @ 08:34:27][x4404c4s4b0n0]
      ; WANDB_MODE=offline ezpz-launch -m ezpz.test_dist --warmup=10 --layer-sizes='256,512,1024,2048,4096,2048,1024,512,256' --dtype=bf16 --train-iters=5000 --print-freq=100 --log-freq=10
      [W602 08:39:04.786863061 OperatorEntry.cpp:155] Warning: Warning only once for all operators,  other operators may also be overridden.
      Overriding a previously registered kernel for the same operator and the same dispatch key
      operator: aten::_cummax_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()
          registered at /build/pytorch/build/aten/src/ATen/RegisterSchema.cpp:6
      dispatch key: XPU
      previous kernel: registered at /build/pytorch/build/aten/src/ATen/RegisterCPU.cpp:30476
          new kernel: registered at /build/intel-pytorch-extension/build/Release/csrc/gpu/csrc/aten/generated/ATen/RegisterXPU.cpp:2971 (function operator())
      [2025-06-02 08:39:11,507270][I][ezpz/__init__:278:ezpz] Setting logging level to 'INFO' on 'RANK == 0'
      [2025-06-02 08:39:11,510558][I][ezpz/__init__:279:ezpz] Setting logging level to 'CRITICAL' on all others 'RANK != 0'
      [2025-06-02 08:39:11,646885][I][ezpz/launch:157] Job ID: 5414072
      [2025-06-02 08:39:11,956377][I][ezpz/launch:163] Node file: /var/spool/pbs/aux/5414072.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov
      [2025-06-02 08:39:11,961307][I][ezpz/launch:178] Building command to execute by piecing together:(1.) ['launch_cmd'] + (2.) ['python'] + (3.) ['cmd_to_launch']
      [2025-06-02 08:39:11,962039][I][ezpz/launch:182] (1.) ['launch_cmd']: mpiexec --verbose --envall --np=24 --ppn=12 --hostfile=/var/spool/pbs/aux/5414072.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov --cpu-bind=depth --depth=8
      [2025-06-02 08:39:11,962616][I][ezpz/launch:183] (2.) ['python']: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/venvs/aurora_nre_models_frameworks-2025.0.0/bin/python3
      [2025-06-02 08:39:11,963015][I][ezpz/launch:184] (3.) ['cmd_to_launch']:  -m ezpz.test_dist
      [2025-06-02 08:39:11,963622][I][ezpz/launch:189] Took: 0.45 seconds to build command.
      [2025-06-02 08:39:11,963985][I][ezpz/launch:192] Executing: mpiexec --verbose --envall --np=24 --ppn=12 --hostfile=/var/spool/pbs/aux/5414072.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov --cpu-bind=depth --depth=8 /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/venvs/aurora_nre_models_frameworks-2025.0.0/bin/python3 -m ezpz.test_dist
      [2025-06-02 08:39:11,964786][I][ezpz/launch:119] Filtering for Aurora-specific messages. To view list of filters, run with `EZPZ_LOG_LEVEL=DEBUG`
      [2025-06-02 08:39:11,965257][I][ezpz/launch:199] Execution started @ 2025-06-02-083911...
      
      Disabling local launch: multi-node application
      Connected to tcp://x4404c4s4b0n0.hostmgmt2404.cm.aurora.alcf.anl.gov:7919
      Launching application 09a72a12-de4b-461f-bd7d-d7990dbee665
      [2025-06-02 08:39:25,068320][I][ezpz/__init__:278:ezpz] Setting logging level to 'INFO' on 'RANK == 0'
      [2025-06-02 08:39:25,070671][I][ezpz/__init__:279:ezpz] Setting logging level to 'CRITICAL' on all others 'RANK != 0'
      [2025-06-02 08:39:25,075236][I][ezpz/dist:760] Using get_torch_device_type()='xpu' with be='ddp'
      [2025-06-02 08:39:25,076000][I][ezpz/dist:573] Initializing process group with rank=0, world_size=24, torch_backend=ccl
      2025:06:02-08:39:26:(23179) |CCL_WARN| value of CCL_LOG_LEVEL changed to be error (default:warn)
      [2025-06-02 08:39:26,728835][I][ezpz/dist:964] Using device='xpu' with backend='ddp' + 'ccl' for distributed training.
      [2025-06-02 08:39:26,729616][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 0/23]
      [2025-06-02 08:39:26,728822][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 3/23]
      [2025-06-02 08:39:26,728839][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 1/23]
      [2025-06-02 08:39:26,728828][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 2/23]
      [2025-06-02 08:39:26,728834][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 4/23]
      [2025-06-02 08:39:26,728826][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 5/23]
      [2025-06-02 08:39:26,728821][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 7/23]
      [2025-06-02 08:39:26,728814][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 8/23]
      [2025-06-02 08:39:26,728819][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 9/23]
      [2025-06-02 08:39:26,728816][I][ezpz/dist:1011] ['x4404c4s4b0n0'][10/23]
      [2025-06-02 08:39:26,728815][I][ezpz/dist:1011] ['x4404c4s4b0n0'][11/23]
      [2025-06-02 08:39:26,728883][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 6/23]
      [2025-06-02 08:39:26,728812][I][ezpz/dist:1011] ['x4404c4s6b0n0'][18/23]
      [2025-06-02 08:39:26,728815][I][ezpz/dist:1011] ['x4404c4s6b0n0'][22/23]
      [2025-06-02 08:39:26,728829][I][ezpz/dist:1011] ['x4404c4s6b0n0'][12/23]
      [2025-06-02 08:39:26,728827][I][ezpz/dist:1011] ['x4404c4s6b0n0'][13/23]
      [2025-06-02 08:39:26,728827][I][ezpz/dist:1011] ['x4404c4s6b0n0'][14/23]
      [2025-06-02 08:39:26,728833][I][ezpz/dist:1011] ['x4404c4s6b0n0'][15/23]
      [2025-06-02 08:39:26,728831][I][ezpz/dist:1011] ['x4404c4s6b0n0'][16/23]
      [2025-06-02 08:39:26,728827][I][ezpz/dist:1011] ['x4404c4s6b0n0'][17/23]
      [2025-06-02 08:39:26,728812][I][ezpz/dist:1011] ['x4404c4s6b0n0'][19/23]
      [2025-06-02 08:39:26,728811][I][ezpz/dist:1011] ['x4404c4s6b0n0'][20/23]
      [2025-06-02 08:39:26,731907][I][ezpz/test_dist:468:__main__] Took: 1.66 seconds to setup torch
      [2025-06-02 08:39:26,728812][I][ezpz/dist:1011] ['x4404c4s6b0n0'][21/23]
      [2025-06-02 08:39:26,728813][I][ezpz/dist:1011] ['x4404c4s6b0n0'][23/23]
      [2025-06-02 08:39:26,748088][I][ezpz/test_dist:218:__main__] Model size: 837632 parameters
      [2025-06-02 08:39:26,750571][I][ezpz/test_dist:220:__main__]
      =================================================================
      Layer (type:depth-idx)                   Param #
      =================================================================
      SequentialLinearNet                      --
      β”œβ”€Sequential: 1-1                        837,632
      =================================================================
      Total params: 837,632
      Trainable params: 837,632
      Non-trainable params: 0
      =================================================================
      [2025-06-02 08:39:26,751974][I][ezpz/test_dist:226:__main__] Took: 0.011442308983532712 seconds to build model
      [2025-06-02 08:39:26,756362][I][ezpz/test_dist:406:__main__] model=
      SequentialLinearNet(
      (layers): Sequential(
          (0): Linear(in_features=128, out_features=1024, bias=True)
          (1): ReLU()
          (2): Linear(in_features=1024, out_features=512, bias=True)
          (3): ReLU()
          (4): Linear(in_features=512, out_features=256, bias=True)
          (5): ReLU()
          (6): Linear(in_features=256, out_features=128, bias=True)
          (7): ReLU()
          (8): Linear(in_features=128, out_features=128, bias=True)
      )
      )
      [2025-06-02 08:39:37,687236][I][ezpz/test_dist:230:__main__] Took: 10.94 seconds to build optimizer
      [2025-06-02 08:39:37,700439][I][ezpz/dist:1222] Setting up wandb from rank=0
      [2025-06-02 08:39:37,701214][I][ezpz/dist:1223] Using WB_PROJECT=ezpz.test_dist
      wandb: Tracking run with wandb version 0.19.10
      wandb: W&B syncing is set to `offline` in this directory. Run `wandb online` or set WANDB_MODE=online to enable cloud syncing.
      wandb: WARNING URL not available in offline run
      [2025-06-02 08:39:38,357037][I][ezpz/dist:1249] wandb.run=[None](None)
      [2025-06-02 08:39:38,363539][I][ezpz/dist:1285] Running on machine='Aurora'
      [2025-06-02 08:39:38,368294][I][ezpz/test_dist:233:__main__] Took: 0.68 seconds to build trainer
      [2025-06-02 08:39:38,368985][I][ezpz/test_dist:235:__main__] config:
      {
      "backend": "DDP",
      "batch_size": 64,
      "cp": 1,
      "dtype": "bfloat16",
      "input_size": 128,
      "layer_sizes": [
          1024,
          512,
          256,
          128
      ],
      "log_freq": 1,
      "output_size": 128,
      "pp": 1,
      "print_freq": 10,
      "pyinstrument_profiler": false,
      "tp": 1,
      "train_iters": 100,
      "warmup": 2
      }
      [2025-06-02 08:39:38,370322][I][ezpz/test_dist:237:__main__] Took: 13.30 to get here.
      [2025-06-02 08:39:38,794611][I][ezpz/test_dist:196:__main__] Warmup complete at step 2
      [2025-06-02 08:39:38,813169][I][ezpz/test_dist:174:__main__] iter=10 loss=904.000000 dtf=0.000644 dtb=0.001260
      [2025-06-02 08:39:38,835905][I][ezpz/test_dist:174:__main__] iter=20 loss=712.000000 dtf=0.000610 dtb=0.001283
      [2025-06-02 08:39:38,858533][I][ezpz/test_dist:174:__main__] iter=30 loss=704.000000 dtf=0.000608 dtb=0.001252
      [2025-06-02 08:39:38,880929][I][ezpz/test_dist:174:__main__] iter=40 loss=684.000000 dtf=0.000607 dtb=0.001315
      [2025-06-02 08:39:38,903701][I][ezpz/test_dist:174:__main__] iter=50 loss=684.000000 dtf=0.000579 dtb=0.001247
      [2025-06-02 08:39:38,926119][I][ezpz/test_dist:174:__main__] iter=60 loss=676.000000 dtf=0.000597 dtb=0.001234
      [2025-06-02 08:39:38,948978][I][ezpz/test_dist:174:__main__] iter=70 loss=664.000000 dtf=0.000603 dtb=0.001242
      [2025-06-02 08:39:38,971256][I][ezpz/test_dist:174:__main__] iter=80 loss=672.000000 dtf=0.000599 dtb=0.001240
      [2025-06-02 08:39:38,993829][I][ezpz/test_dist:174:__main__] iter=90 loss=672.000000 dtf=0.000615 dtb=0.001249
      [2025-06-02 08:39:40,390558][I][ezpz/history:721] Saving iter plot to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/mplot
      [2025-06-02 08:39:40,653794][I][ezpz/history:721] Saving loss plot to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/mplot
      [2025-06-02 08:39:40,894262][I][ezpz/history:721] Saving dtf plot to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/mplot
      [2025-06-02 08:39:41,191474][I][ezpz/history:721] Saving dtb plot to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/mplot
      [2025-06-02 08:39:41,377999][I][ezpz/history:618] Saving tplots to /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/tplot
                          loss [2025-06-02-083941]
          β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      2448β”€β–Œ                                                     β”‚
          β”‚β–Œ                                                     β”‚
      2150β”€β–š                                                     β”‚
          │▐                                                     β”‚
          │▐                                                     β”‚
      1852─▐                                                     β”‚
          │▝▖                                                    β”‚
      1554─ β–š                                                    β”‚
          β”‚ ▝▖                                                   β”‚
      1256─  β–Œ                                                   β”‚
          β”‚  ▐                                                   β”‚
          β”‚   β–Œ                                                  β”‚
       958─   ▝▖                                                 β”‚
          β”‚    ▝▄▄                                               β”‚
       660─       β–€β–€β–€β–€β–€β–€β–€β–€β–€β–šβ–„β–€β–žβ–šβ–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–žβ–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β”‚
          β””β”€β”¬β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”˜
          0 2  9  15  22  30  37 42 48 53 59 65  71  79 84 90 96
      loss                          iter
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/tplot/loss.txt
                          dtf [2025-06-02-083941]
              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      0.000805─                                 β–—β–Œ               β”‚
              β”‚                                 β–β–Œ               β”‚
      0.000766─                                 β–β–Œ               β”‚
              β”‚β–Œ                                β–β–Œ               β”‚
              β”‚β–Œ                                β–β–Œ               β”‚
      0.000727β”€β–Œ   β––              β–Ÿ          β––  β–β–Œβ––              β”‚
              β”‚β–Œ  β–β–Œ              β–ˆ     β––   β–β–Œ  β–β–ˆβ–Œ              β”‚
      0.000688β”€β–Œ  β–β–Œ    β–—    β–Ÿ    β–ˆ    β–β–Œ   β–β–Œ  β–β–ˆβ–Œ   β–—β–Œ         β”‚
              β”‚β–Œ  β–β–Œ    β–ˆ    β–ˆ    β–ˆ    β–β–Œ   β–β–Œ  β–β–ˆβ–Œ   β–β–Œ    β–Ÿ    β”‚
      0.000649β”€β–Œ  β–β–Œ    β–ˆ    β–ˆ    β–ˆ    β–β–Œ   β–β–Œ  β–β–ˆβ–Œ   β–β–Œ    β–ˆ    β”‚
              β”‚β–Œβ–—β–Œβ–žβ–Œ    β–ˆ    β–ˆ    β–Œβ–€β–Œ  β–žβ–β–Œ  β–β–Œ β––β–β–ˆβ–Œ   β–β–Œ    β–ˆ    β”‚
              β”‚β–šβ–€β–β–Œβ–Œ β–– β–—β–ˆ   β––β–ˆβ–—   β–Œ β–Œ  β–Œ ▐  β–β–šβ–€β–Œβ–β–ˆβ–š   β–Ÿβ–Œβ–žβ–š  β–ˆβ–Ÿβ–—  β”‚
      0.000610─   β–˜β–β–β–šβ–šβ–˜β–˜β–™β–œβ–β–β–€β–Œβ–Œβ–žβ–šβ–Œ β–šβ–žβ––β–Œ β–β–Ÿβ–Ÿβ–  β–šβ–β–œ β–š β–Ÿβ–ˆβ– ▝▖▐ β–˜β–œβ–žβ–€β”‚
              β”‚    β–β–Œ    β–β–β–Œ   ▝      β–β–Œ  β–β–ˆβ–ž   β–˜  β–β–žβ–œβ–   β–šβ–ž  β–β–Œ β”‚
      0.000571─                        β–˜  β–β–Œβ–˜       β–˜         β–β–Œ β”‚
              β””β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”˜
              0 2  9 15  22  30 37 42 48 53 60 65 71  79 85   96
      dtf                             iter
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/tplot/dtf.txt
                          dtf [2025-06-02-083941]
          β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      52.0─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
      43.3─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
      34.7─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
      26.0─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
      17.3─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                      β”‚
          β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                      β”‚
       8.7β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
          β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                β”‚
       0.0β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ      β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
          β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
      0.000560    0.000624      0.000688     0.000752  0.000815
      freq                           dtf
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/tplot/dtf-hist.txt
                          dtb [2025-06-02-083941]
              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      0.001447─             β–Ÿ         β–Ÿ                          β”‚
              β”‚             β–ˆ         β–ˆ                          β”‚
      0.001409─             β–ˆ         β–ˆ                    β––     β”‚
              β”‚             β–ˆ         β–ˆ                   β–β–Œ     β”‚
              β”‚             β–ˆ         β–ˆ                   β–β–Œ     β”‚
      0.001371─             β–ˆ         β–ˆ                   β–β–Œ     β”‚
              β”‚             β–ˆ     β–Ÿ   β–ˆ                   β–β–Œ     β”‚
      0.001333─   β–—β–Œβ–—    β–—β–Œ β–ˆ     β–ˆ   β–ˆ β–—                 β–β–Œ     β”‚
              β”‚β––β–— β–β–Œβ–ˆ  β–— β–β–Œ β–ˆ     β–Œβ–Œ  β–ˆ β–ˆ   β–—β–Œβ–—  β–—β–š     β–—β–Œβ–β–Œ     β”‚
      0.001294β”€β–Œβ–ˆ β–β–Œβ–ˆ β–—β–œ β–β–Œ β–ˆ    ▐ ▐  β–ˆβ–β–   β–β–β–œ  ▐▐     β–β–β–β–Œ     β”‚
              β”‚β–β–ˆβ–Ÿβ–β–Œβ–›β–„β–žβ–β–„β–β–š β–ˆβ–—β–—β–Œ ▐ ▐  β–ˆβ–β–   ▐ ▐  ▐▐ β––   β–Œβ–β–β–Œβ–—    β”‚
              β”‚β–β–ˆβ–ˆβ–β–β–˜β–β–Œ β–β–Œβ–β–Ÿβ–ˆβ–Œβ–ˆβ–™β–Œβ–  β–Œ β–ˆβ–Œ β–Œ ▗▐ ▝▄ β–β–β–β–Œ  β–—β–˜β–β–β–Œβ–ˆ    β”‚
      0.001256─ β–€β–Œβ–€   β–˜    β–˜β–€β–Œβ–β–β–Œβ–ž  ▐ β–›β–Œ β–šβ–—β–ˆβ–  β–β–Ÿβ–β–β–Ÿβ–Œ  β–Ÿ  β–ˆβ–Œβ–ˆ    β”‚
              β”‚                 β–ˆ   β–β–—β–˜   β–˜ β–œ    β–€ β–β–β–šβ–€   β–œβ–œ β–€β–€β–žβ–„β”‚
      0.001218─                 ▝   β–β–Œ                           β”‚
              β””β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”˜
              0 2  9 15  22  30 37 42 48 53 60 65 71  79 85   96
      dtb                             iter
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/tplot/dtb.txt
                          dtb [2025-06-02-083941]
          β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      38.0─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
      31.7─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
      25.3─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                           β”‚
      19.0─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                      β”‚
          β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                      β”‚
      12.7β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ      β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                           β”‚
          β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ      β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                           β”‚
          β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                           β”‚
       6.3β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                           β”‚
          β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
       0.0β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ           β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
          β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
      0.001208    0.001270      0.001333     0.001395  0.001457
      freq                           dtb
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/ezpz.test_dist/ezpz.test_dist/plots/tplot/dtb-hist.txt
      [2025-06-02 08:39:41,427412][I][ezpz/test_dist:190:__main__] dataset=<xarray.Dataset> Size: 3kB
      Dimensions:  (draw: 97)
      Coordinates:
      * draw     (draw) int64 776B 0 1 2 3 4 5 6 7 8 ... 88 89 90 91 92 93 94 95 96
      Data variables:
          iter     (draw) int64 776B 3 4 5 6 7 8 9 10 11 ... 92 93 94 95 96 97 98 99
          loss     (draw) float32 388B 2.448e+03 2.112e+03 1.664e+03 ... 672.0 688.0
          dtf      (draw) float64 776B 0.0007564 0.0006201 ... 0.0006089 0.0006102
          dtb      (draw) float64 776B 0.001315 0.001286 ... 0.001238 0.001236
      [2025-06-02 08:39:41,429616][I][ezpz/test_dist:241:__main__] Took: 3.06 seconds to finish training
      [2025-06-02 08:39:41,430364][I][ezpz/test_dist:476:__main__] Took: 16.36 seconds
      wandb:
      wandb: You can sync this run to the cloud by running:
      wandb: wandb sync /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/wandb/offline-run-20250602_083937-57itor57
      wandb: Find logs at: ../../../../../../lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/wandb/offline-run-20250602_083937-57itor57/logs
      Application 09a72a12 resources: utime=853s stime=186s maxrss=3932628KB inblock=749276 oublock=904 minflt=11280849 majflt=42365 nvcsw=380342 nivcsw=3251786
      [2025-06-02 08:39:44,095734][I][ezpz/launch:201] Execution finished @ 2025-06-02-083944
      [2025-06-02 08:39:44,096767][I][ezpz/launch:202] Command took 32.13 seconds to run. Exiting.
      took: 0h:00m:43s
    • Arbitrary python string:

      ezpz-launch -c "'import ezpz; ezpz.setup_torch()'"
      Output:
      #[🐍 aurora_nre_models_frameworks-2025.0.0](πŸ‘» aurora_nre_models_frameworks-2025.0.0)
      #[/f/d/f/p/s/ezpz][🌱 saforem2/dev][πŸ“¦πŸ€·βœ“]
      #[06/02/25 @ 08:06:17][x4404c4s4b0n0]
      ; ezpz-launch -c "'import ezpz; ezpz.setup_torch()'"
      
      [W602 08:06:24.384316779 OperatorEntry.cpp:155] Warning: Warning only once for all operators,  other operators may also be overridden.
      Overriding a previously registered kernel for the same operator and the same dispatch key
      operator: aten::_cummax_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()
          registered at /build/pytorch/build/aten/src/ATen/RegisterSchema.cpp:6
      dispatch key: XPU
      previous kernel: registered at /build/pytorch/build/aten/src/ATen/RegisterCPU.cpp:30476
          new kernel: registered at /build/intel-pytorch-extension/build/Release/csrc/gpu/csrc/aten/generated/ATen/RegisterXPU.cpp:2971 (function operator())
      [2025-06-02 08:06:31,007494][I][ezpz/__init__:278:ezpz] Setting logging level to 'INFO' on 'RANK == 0'
      [2025-06-02 08:06:31,009869][I][ezpz/__init__:279:ezpz] Setting logging level to 'CRITICAL' on all others 'RANK != 0'
      [2025-06-02 08:06:31,153935][I][ezpz/launch:157] Job ID: 5414072
      [2025-06-02 08:06:31,463973][I][ezpz/launch:163] Node file: /var/spool/pbs/aux/5414072.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov
      [2025-06-02 08:06:31,469362][I][ezpz/launch:178] Building command to execute by piecing together:(1.) ['launch_cmd'] + (2.) ['python'] + (3.) ['cmd_to_launch']
      [2025-06-02 08:06:31,470095][I][ezpz/launch:182] (1.) ['launch_cmd']: mpiexec --verbose --envall --np=24 --ppn=12 --hostfile=/var/spool/pbs/aux/5414072.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov --cpu-bind=depth --depth=8
      [2025-06-02 08:06:31,470676][I][ezpz/launch:183] (2.) ['python']: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/venvs/aurora_nre_models_frameworks-2025.0.0/bin/python3
      [2025-06-02 08:06:31,471081][I][ezpz/launch:184] (3.) ['cmd_to_launch']:  -c 'import ezpz; ezpz.setup_torch()'
      [2025-06-02 08:06:31,471734][I][ezpz/launch:189] Took: 0.46 seconds to build command.
      [2025-06-02 08:06:31,472111][I][ezpz/launch:192] Executing: mpiexec --verbose --envall --np=24 --ppn=12 --hostfile=/var/spool/pbs/aux/5414072.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov --cpu-bind=depth --depth=8 /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/venvs/aurora_nre_models_frameworks-2025.0.0/bin/python3 -c 'import ezpz; ezpz.setup_torch()'
      [2025-06-02 08:06:31,472988][I][ezpz/launch:119] Filtering for Aurora-specific messages. To view list of filters, run with `EZPZ_LOG_LEVEL=DEBUG`
      [2025-06-02 08:06:31,473468][I][ezpz/launch:199] Execution started @ 2025-06-02-080631...
      
      Disabling local launch: multi-node application
      Connected to tcp://x4404c4s4b0n0.hostmgmt2404.cm.aurora.alcf.anl.gov:7919
      Launching application a166c768-dd6f-4d44-bcd7-d6f0ddd3da16
      [2025-06-02 08:06:48,763446][I][ezpz/__init__:278:ezpz] Setting logging level to 'INFO' on 'RANK == 0'
      [2025-06-02 08:06:48,765755][I][ezpz/__init__:279:ezpz] Setting logging level to 'CRITICAL' on all others 'RANK != 0'
      [2025-06-02 08:06:48,766509][I][ezpz/dist:760] Using get_torch_device_type()='xpu' with be='ddp'
      [2025-06-02 08:06:48,767183][I][ezpz/dist:573] Initializing process group with rank=0, world_size=24, torch_backend=ccl
      2025:06:02-08:06:52:(202581) |CCL_WARN| value of CCL_LOG_LEVEL changed to be error (default:warn)
      [2025-06-02 08:06:52,740330][I][ezpz/dist:964] Using device='xpu' with backend='ddp' + 'ccl' for distributed training.
      [2025-06-02 08:06:52,741117][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 0/23]
      [2025-06-02 08:06:52,740305][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 1/23]
      [2025-06-02 08:06:52,740308][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 3/23]
      [2025-06-02 08:06:52,740313][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 4/23]
      [2025-06-02 08:06:52,740304][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 5/23]
      [2025-06-02 08:06:52,740339][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 2/23]
      [2025-06-02 08:06:52,740272][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 7/23]
      [2025-06-02 08:06:52,740283][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 8/23]
      [2025-06-02 08:06:52,740275][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 9/23]
      [2025-06-02 08:06:52,740302][I][ezpz/dist:1011] ['x4404c4s4b0n0'][10/23]
      [2025-06-02 08:06:52,740275][I][ezpz/dist:1011] ['x4404c4s4b0n0'][11/23]
      [2025-06-02 08:06:52,740349][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 6/23]
      [2025-06-02 08:06:52,740225][I][ezpz/dist:1011] ['x4404c4s6b0n0'][21/23]
      [2025-06-02 08:06:52,740227][I][ezpz/dist:1011] ['x4404c4s6b0n0'][22/23]
      [2025-06-02 08:06:52,740224][I][ezpz/dist:1011] ['x4404c4s6b0n0'][23/23]
      [2025-06-02 08:06:52,740253][I][ezpz/dist:1011] ['x4404c4s6b0n0'][12/23]
      [2025-06-02 08:06:52,740240][I][ezpz/dist:1011] ['x4404c4s6b0n0'][13/23]
      [2025-06-02 08:06:52,740250][I][ezpz/dist:1011] ['x4404c4s6b0n0'][14/23]
      [2025-06-02 08:06:52,740247][I][ezpz/dist:1011] ['x4404c4s6b0n0'][15/23]
      [2025-06-02 08:06:52,740258][I][ezpz/dist:1011] ['x4404c4s6b0n0'][16/23]
      [2025-06-02 08:06:52,740240][I][ezpz/dist:1011] ['x4404c4s6b0n0'][17/23]
      [2025-06-02 08:06:52,740287][I][ezpz/dist:1011] ['x4404c4s6b0n0'][18/23]
      [2025-06-02 08:06:52,740226][I][ezpz/dist:1011] ['x4404c4s6b0n0'][19/23]
      [2025-06-02 08:06:52,740235][I][ezpz/dist:1011] ['x4404c4s6b0n0'][20/23]
      Application a166c768 resources: utime=247s stime=157s maxrss=3066848KB inblock=855410 oublock=0 minflt=6675290 majflt=22830 nvcsw=346921 nivcsw=1219341
      [2025-06-02 08:06:55,051587][I][ezpz/launch:201] Execution finished @ 2025-06-02-080655
      [2025-06-02 08:06:55,052786][I][ezpz/launch:202] Command took 23.58 seconds to run. Exiting.
      took: 0h:00m:35s
    • Minimal example [ezpz / examples / minimal.py]:

      ezpz-launch -m ezpz.examples.minimal
      Output:
      #[🐍 aurora_nre_models_frameworks-2025.0.0](πŸ‘» aurora_nre_models_frameworks-2025.0.0)
      #[/f/d/f/p/s/ezpz][🌱 saforem2/dev][πŸ“¦πŸ€·βœ“] [⏱️ 58s]
      #[06/02/25 @ 08:24:30][x4404c4s4b0n0]
      ; WANDB_MODE=offline PRINT_ITERS=100 TRAIN_ITERS=1000 ezpz-launch -m ezpz.examples.minimal
      [W602 08:24:33.632744487 OperatorEntry.cpp:155] Warning: Warning only once for all operators,  other operators may also be overridden.
      Overriding a previously registered kernel for the same operator and the same dispatch key
      operator: aten::_cummax_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()
          registered at /build/pytorch/build/aten/src/ATen/RegisterSchema.cpp:6
      dispatch key: XPU
      previous kernel: registered at /build/pytorch/build/aten/src/ATen/RegisterCPU.cpp:30476
          new kernel: registered at /build/intel-pytorch-extension/build/Release/csrc/gpu/csrc/aten/generated/ATen/RegisterXPU.cpp:2971 (function operator())
      [2025-06-02 08:24:40,394556][I][ezpz/__init__:278:ezpz] Setting logging level to 'INFO' on 'RANK == 0'
      [2025-06-02 08:24:40,397025][I][ezpz/__init__:279:ezpz] Setting logging level to 'CRITICAL' on all others 'RANK != 0'
      [2025-06-02 08:24:40,546683][I][ezpz/launch:157] Job ID: 5414072
      [2025-06-02 08:24:40,862126][I][ezpz/launch:163] Node file: /var/spool/pbs/aux/5414072.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov
      [2025-06-02 08:24:40,867464][I][ezpz/launch:178] Building command to execute by piecing together:(1.) ['launch_cmd'] + (2.) ['python'] + (3.) ['cmd_to_launch']
      [2025-06-02 08:24:40,868229][I][ezpz/launch:182] (1.) ['launch_cmd']: mpiexec --verbose --envall --np=24 --ppn=12 --hostfile=/var/spool/pbs/aux/5414072.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov --cpu-bind=depth --depth=8
      [2025-06-02 08:24:40,868796][I][ezpz/launch:183] (2.) ['python']: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/venvs/aurora_nre_models_frameworks-2025.0.0/bin/python3
      [2025-06-02 08:24:40,869195][I][ezpz/launch:184] (3.) ['cmd_to_launch']:  -m ezpz.examples.minimal
      [2025-06-02 08:24:40,869807][I][ezpz/launch:189] Took: 0.47 seconds to build command.
      [2025-06-02 08:24:40,870158][I][ezpz/launch:192] Executing: mpiexec --verbose --envall --np=24 --ppn=12 --hostfile=/var/spool/pbs/aux/5414072.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov --cpu-bind=depth --depth=8 /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/venvs/aurora_nre_models_frameworks-2025.0.0/bin/python3 -m ezpz.examples.minimal
      [2025-06-02 08:24:40,871013][I][ezpz/launch:119] Filtering for Aurora-specific messages. To view list of filters, run with `EZPZ_LOG_LEVEL=DEBUG`
      [2025-06-02 08:24:40,871479][I][ezpz/launch:199] Execution started @ 2025-06-02-082440...
      
      Disabling local launch: multi-node application
      Connected to tcp://x4404c4s4b0n0.hostmgmt2404.cm.aurora.alcf.anl.gov:7919
      Launching application 51803e72-8555-4056-b49e-4aa9ffb3b099
      [2025-06-02 08:24:54,200723][I][ezpz/__init__:278:ezpz] Setting logging level to 'INFO' on 'RANK == 0'
      [2025-06-02 08:24:54,203301][I][ezpz/__init__:279:ezpz] Setting logging level to 'CRITICAL' on all others 'RANK != 0'
      [2025-06-02 08:24:54,206944][I][ezpz/dist:760] Using get_torch_device_type()='xpu' with be='ddp'
      [2025-06-02 08:24:54,207778][I][ezpz/dist:573] Initializing process group with rank=0, world_size=24, torch_backend=ccl
      2025:06:02-08:24:55:(17665) |CCL_WARN| value of CCL_LOG_LEVEL changed to be error (default:warn)
      [2025-06-02 08:24:55,942022][I][ezpz/dist:964] Using device='xpu' with backend='ddp' + 'ccl' for distributed training.
      [2025-06-02 08:24:55,942738][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 0/23]
      [2025-06-02 08:24:55,941993][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 3/23]
      [2025-06-02 08:24:55,942007][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 1/23]
      [2025-06-02 08:24:55,942013][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 2/23]
      [2025-06-02 08:24:55,942019][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 4/23]
      [2025-06-02 08:24:55,942013][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 5/23]
      [2025-06-02 08:24:55,941989][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 8/23]
      [2025-06-02 08:24:55,942001][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 6/23]
      [2025-06-02 08:24:55,941994][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 7/23]
      [2025-06-02 08:24:55,941995][I][ezpz/dist:1011] ['x4404c4s4b0n0'][10/23]
      [2025-06-02 08:24:55,941990][I][ezpz/dist:1011] ['x4404c4s4b0n0'][11/23]
      [2025-06-02 08:24:55,942003][I][ezpz/dist:1011] ['x4404c4s4b0n0'][ 9/23]
      [2025-06-02 08:24:55,942096][I][ezpz/dist:1011] ['x4404c4s6b0n0'][12/23]
      [2025-06-02 08:24:55,942095][I][ezpz/dist:1011] ['x4404c4s6b0n0'][13/23]
      [2025-06-02 08:24:55,942101][I][ezpz/dist:1011] ['x4404c4s6b0n0'][14/23]
      [2025-06-02 08:24:55,942096][I][ezpz/dist:1011] ['x4404c4s6b0n0'][15/23]
      [2025-06-02 08:24:55,942092][I][ezpz/dist:1011] ['x4404c4s6b0n0'][16/23]
      [2025-06-02 08:24:55,942097][I][ezpz/dist:1011] ['x4404c4s6b0n0'][17/23]
      [2025-06-02 08:24:55,942091][I][ezpz/dist:1011] ['x4404c4s6b0n0'][18/23]
      [2025-06-02 08:24:55,942073][I][ezpz/dist:1011] ['x4404c4s6b0n0'][19/23]
      [2025-06-02 08:24:55,942076][I][ezpz/dist:1011] ['x4404c4s6b0n0'][20/23]
      [2025-06-02 08:24:55,942080][I][ezpz/dist:1011] ['x4404c4s6b0n0'][21/23]
      [2025-06-02 08:24:55,945053][I][ezpz/dist:1222] Setting up wandb from rank=0
      [2025-06-02 08:24:55,942081][I][ezpz/dist:1011] ['x4404c4s6b0n0'][22/23]
      [2025-06-02 08:24:55,942072][I][ezpz/dist:1011] ['x4404c4s6b0n0'][23/23]
      [2025-06-02 08:24:55,945440][I][ezpz/dist:1223] Using WB_PROJECT=ezpz.examples.minimal
      wandb: Tracking run with wandb version 0.19.10
      wandb: W&B syncing is set to `offline` in this directory. Run `wandb online` or set WANDB_MODE=online to enable cloud syncing.
      wandb: WARNING URL not available in offline run
      [2025-06-02 08:24:56,605530][I][ezpz/dist:1249] wandb.run=[None](None)
      [2025-06-02 08:24:56,611884][I][ezpz/dist:1285] Running on machine='Aurora'
      [2025-06-02 08:24:56,655910][I][examples/minimal:88:__main__] model=SequentialLinearNet(
      (layers): Sequential(
          (0): Linear(in_features=128, out_features=256, bias=True)
          (1): ReLU()
          (2): Linear(in_features=256, out_features=512, bias=True)
          (3): ReLU()
          (4): Linear(in_features=512, out_features=1024, bias=True)
          (5): ReLU()
          (6): Linear(in_features=1024, out_features=2048, bias=True)
          (7): ReLU()
          (8): Linear(in_features=2048, out_features=1024, bias=True)
          (9): ReLU()
          (10): Linear(in_features=1024, out_features=512, bias=True)
          (11): ReLU()
          (12): Linear(in_features=512, out_features=256, bias=True)
          (13): ReLU()
          (14): Linear(in_features=256, out_features=128, bias=True)
          (15): ReLU()
          (16): Linear(in_features=128, out_features=128, bias=True)
      )
      )
      [2025-06-02 08:25:07,566410][I][ezpz/dist:144] `setup` took: dt=13.3595s
      [2025-06-02 08:25:08,196630][I][examples/minimal:51:__main__] iter=20 loss=713.134399 dt=0.005150 dtf=0.001118 dtb=0.004031
      [2025-06-02 08:25:08,254359][I][examples/minimal:51:__main__] iter=30 loss=698.142334 dt=0.005140 dtf=0.001098 dtb=0.004042
      [2025-06-02 08:25:08,311676][I][examples/minimal:51:__main__] iter=40 loss=688.149536 dt=0.005088 dtf=0.001100 dtb=0.003988
      [2025-06-02 08:25:08,369744][I][examples/minimal:51:__main__] iter=50 loss=685.806091 dt=0.005097 dtf=0.001088 dtb=0.004009
      [2025-06-02 08:25:08,427011][I][examples/minimal:51:__main__] iter=60 loss=689.389771 dt=0.005140 dtf=0.001099 dtb=0.004041
      [2025-06-02 08:25:08,484186][I][examples/minimal:51:__main__] iter=70 loss=695.363220 dt=0.005125 dtf=0.001111 dtb=0.004014
      [2025-06-02 08:25:08,541436][I][examples/minimal:51:__main__] iter=80 loss=667.858032 dt=0.005074 dtf=0.001092 dtb=0.003982
      [2025-06-02 08:25:08,598606][I][examples/minimal:51:__main__] iter=90 loss=676.533142 dt=0.005130 dtf=0.001084 dtb=0.004046
      [2025-06-02 08:25:08,656182][I][examples/minimal:51:__main__] iter=100 loss=676.170593 dt=0.005510 dtf=0.001399 dtb=0.004111
      [2025-06-02 08:25:08,713804][I][examples/minimal:51:__main__] iter=110 loss=676.684814 dt=0.005106 dtf=0.001093 dtb=0.004013
      [2025-06-02 08:25:08,773811][I][examples/minimal:51:__main__] iter=120 loss=682.333984 dt=0.005353 dtf=0.001093 dtb=0.004260
      [2025-06-02 08:25:08,832594][I][examples/minimal:51:__main__] iter=130 loss=691.218079 dt=0.005333 dtf=0.001119 dtb=0.004214
      [2025-06-02 08:25:08,891644][I][examples/minimal:51:__main__] iter=140 loss=686.254883 dt=0.005318 dtf=0.001096 dtb=0.004223
      [2025-06-02 08:25:08,950476][I][examples/minimal:51:__main__] iter=150 loss=671.173218 dt=0.005462 dtf=0.001090 dtb=0.004372
      [2025-06-02 08:25:09,009324][I][examples/minimal:51:__main__] iter=160 loss=675.119751 dt=0.005372 dtf=0.001095 dtb=0.004277
      [2025-06-02 08:25:09,068117][I][examples/minimal:51:__main__] iter=170 loss=681.518127 dt=0.005401 dtf=0.001101 dtb=0.004299
      [2025-06-02 08:25:09,129145][I][examples/minimal:51:__main__] iter=180 loss=681.293335 dt=0.005290 dtf=0.001100 dtb=0.004189
      [2025-06-02 08:25:09,188790][I][examples/minimal:51:__main__] iter=190 loss=673.555298 dt=0.006316 dtf=0.001088 dtb=0.005228
      [2025-06-02 08:25:09,248623][I][examples/minimal:51:__main__] iter=200 loss=686.017700 dt=0.005552 dtf=0.001355 dtb=0.004196
      [2025-06-02 08:25:09,307659][I][examples/minimal:51:__main__] iter=210 loss=693.399170 dt=0.005361 dtf=0.001096 dtb=0.004265
      [2025-06-02 08:25:09,366454][I][examples/minimal:51:__main__] iter=220 loss=687.048462 dt=0.005304 dtf=0.001083 dtb=0.004222
      [2025-06-02 08:25:09,425278][I][examples/minimal:51:__main__] iter=230 loss=683.272217 dt=0.005334 dtf=0.001091 dtb=0.004242
      [2025-06-02 08:25:09,484085][I][examples/minimal:51:__main__] iter=240 loss=686.674561 dt=0.005240 dtf=0.001100 dtb=0.004140
      [2025-06-02 08:25:09,542500][I][examples/minimal:51:__main__] iter=250 loss=686.590210 dt=0.005419 dtf=0.001090 dtb=0.004330
      [2025-06-02 08:25:09,601444][I][examples/minimal:51:__main__] iter=260 loss=685.613770 dt=0.005404 dtf=0.000970 dtb=0.004434
      [2025-06-02 08:25:09,660262][I][examples/minimal:51:__main__] iter=270 loss=678.604309 dt=0.005277 dtf=0.000975 dtb=0.004302
      [2025-06-02 08:25:09,718685][I][examples/minimal:51:__main__] iter=280 loss=687.360474 dt=0.005371 dtf=0.000978 dtb=0.004393
      [2025-06-02 08:25:09,777952][I][examples/minimal:51:__main__] iter=290 loss=672.192383 dt=0.005500 dtf=0.000973 dtb=0.004527
      [2025-06-02 08:25:09,836219][I][examples/minimal:51:__main__] iter=300 loss=670.950562 dt=0.005342 dtf=0.001353 dtb=0.003989
      [2025-06-02 08:25:09,894611][I][examples/minimal:51:__main__] iter=310 loss=681.033447 dt=0.005213 dtf=0.001068 dtb=0.004145
      [2025-06-02 08:25:09,952968][I][examples/minimal:51:__main__] iter=320 loss=678.913208 dt=0.005336 dtf=0.000975 dtb=0.004361
      [2025-06-02 08:25:10,011736][I][examples/minimal:51:__main__] iter=330 loss=678.553772 dt=0.005430 dtf=0.001081 dtb=0.004349
      [2025-06-02 08:25:10,070662][I][examples/minimal:51:__main__] iter=340 loss=688.489014 dt=0.005390 dtf=0.001087 dtb=0.004303
      [2025-06-02 08:25:10,129419][I][examples/minimal:51:__main__] iter=350 loss=680.676147 dt=0.005368 dtf=0.000978 dtb=0.004390
      [2025-06-02 08:25:10,187801][I][examples/minimal:51:__main__] iter=360 loss=696.601196 dt=0.005339 dtf=0.001079 dtb=0.004261
      [2025-06-02 08:25:10,246699][I][examples/minimal:51:__main__] iter=370 loss=685.925903 dt=0.005347 dtf=0.001099 dtb=0.004248
      [2025-06-02 08:25:10,305350][I][examples/minimal:51:__main__] iter=380 loss=681.857178 dt=0.005277 dtf=0.001088 dtb=0.004188
      [2025-06-02 08:25:10,364235][I][examples/minimal:51:__main__] iter=390 loss=677.403076 dt=0.005545 dtf=0.001099 dtb=0.004445
      [2025-06-02 08:25:10,423312][I][examples/minimal:51:__main__] iter=400 loss=680.605286 dt=0.005513 dtf=0.001338 dtb=0.004175
      [2025-06-02 08:25:10,482306][I][examples/minimal:51:__main__] iter=410 loss=688.305176 dt=0.005358 dtf=0.001094 dtb=0.004264
      [2025-06-02 08:25:10,541514][I][examples/minimal:51:__main__] iter=420 loss=676.714600 dt=0.005456 dtf=0.001107 dtb=0.004349
      [2025-06-02 08:25:10,600146][I][examples/minimal:51:__main__] iter=430 loss=674.251648 dt=0.005348 dtf=0.001116 dtb=0.004232
      [2025-06-02 08:25:10,659099][I][examples/minimal:51:__main__] iter=440 loss=692.857361 dt=0.005285 dtf=0.001091 dtb=0.004194
      [2025-06-02 08:25:10,718127][I][examples/minimal:51:__main__] iter=450 loss=683.334229 dt=0.005442 dtf=0.001094 dtb=0.004348
      [2025-06-02 08:25:10,776750][I][examples/minimal:51:__main__] iter=460 loss=1509.692139 dt=0.005363 dtf=0.001114 dtb=0.004248
      [2025-06-02 08:25:10,836261][I][examples/minimal:51:__main__] iter=470 loss=943.557617 dt=0.005265 dtf=0.001108 dtb=0.004157
      [2025-06-02 08:25:10,895405][I][examples/minimal:51:__main__] iter=480 loss=704.171509 dt=0.005319 dtf=0.001079 dtb=0.004240
      [2025-06-02 08:25:10,954483][I][examples/minimal:51:__main__] iter=490 loss=683.428223 dt=0.005526 dtf=0.001086 dtb=0.004440
      [2025-06-02 08:25:11,013286][I][examples/minimal:51:__main__] iter=500 loss=687.314941 dt=0.005473 dtf=0.001332 dtb=0.004141
      [2025-06-02 08:25:11,080691][I][examples/minimal:51:__main__] iter=510 loss=688.060669 dt=0.005363 dtf=0.001113 dtb=0.004250
      [2025-06-02 08:25:11,139480][I][examples/minimal:51:__main__] iter=520 loss=686.497314 dt=0.005267 dtf=0.001083 dtb=0.004184
      [2025-06-02 08:25:11,198098][I][examples/minimal:51:__main__] iter=530 loss=691.718445 dt=0.005295 dtf=0.001086 dtb=0.004208
      [2025-06-02 08:25:11,256868][I][examples/minimal:51:__main__] iter=540 loss=681.122681 dt=0.005295 dtf=0.001104 dtb=0.004191
      [2025-06-02 08:25:11,315729][I][examples/minimal:51:__main__] iter=550 loss=683.272705 dt=0.005441 dtf=0.001081 dtb=0.004360
      [2025-06-02 08:25:11,374406][I][examples/minimal:51:__main__] iter=560 loss=688.077271 dt=0.005318 dtf=0.001093 dtb=0.004225
      [2025-06-02 08:25:11,433181][I][examples/minimal:51:__main__] iter=570 loss=683.032715 dt=0.005285 dtf=0.001099 dtb=0.004186
      [2025-06-02 08:25:11,491905][I][examples/minimal:51:__main__] iter=580 loss=686.191040 dt=0.005301 dtf=0.001089 dtb=0.004212
      [2025-06-02 08:25:11,550809][I][examples/minimal:51:__main__] iter=590 loss=691.924744 dt=0.005503 dtf=0.001088 dtb=0.004415
      [2025-06-02 08:25:11,609581][I][examples/minimal:51:__main__] iter=600 loss=681.312744 dt=0.005478 dtf=0.001338 dtb=0.004140
      [2025-06-02 08:25:11,668293][I][examples/minimal:51:__main__] iter=610 loss=680.253540 dt=0.005360 dtf=0.001120 dtb=0.004240
      [2025-06-02 08:25:11,726991][I][examples/minimal:51:__main__] iter=620 loss=683.039673 dt=0.005297 dtf=0.001090 dtb=0.004207
      [2025-06-02 08:25:11,785960][I][examples/minimal:51:__main__] iter=630 loss=679.695679 dt=0.005319 dtf=0.001080 dtb=0.004239
      [2025-06-02 08:25:11,845069][I][examples/minimal:51:__main__] iter=640 loss=686.198608 dt=0.005340 dtf=0.001108 dtb=0.004233
      [2025-06-02 08:25:11,903999][I][examples/minimal:51:__main__] iter=650 loss=683.652954 dt=0.005456 dtf=0.001089 dtb=0.004367
      [2025-06-02 08:25:11,962543][I][examples/minimal:51:__main__] iter=660 loss=686.860229 dt=0.005316 dtf=0.001086 dtb=0.004229
      [2025-06-02 08:25:12,021274][I][examples/minimal:51:__main__] iter=670 loss=680.933960 dt=0.005314 dtf=0.001097 dtb=0.004217
      [2025-06-02 08:25:12,079889][I][examples/minimal:51:__main__] iter=680 loss=679.905151 dt=0.005319 dtf=0.001089 dtb=0.004230
      [2025-06-02 08:25:12,138620][I][examples/minimal:51:__main__] iter=690 loss=682.389832 dt=0.005544 dtf=0.000994 dtb=0.004550
      [2025-06-02 08:25:12,196877][I][examples/minimal:51:__main__] iter=700 loss=686.506714 dt=0.005393 dtf=0.001366 dtb=0.004027
      [2025-06-02 08:25:12,255083][I][examples/minimal:51:__main__] iter=710 loss=690.196533 dt=0.005322 dtf=0.001087 dtb=0.004235
      [2025-06-02 08:25:12,313749][I][examples/minimal:51:__main__] iter=720 loss=678.437134 dt=0.005271 dtf=0.001083 dtb=0.004188
      [2025-06-02 08:25:12,372685][I][examples/minimal:51:__main__] iter=730 loss=682.770264 dt=0.005329 dtf=0.001116 dtb=0.004212
      [2025-06-02 08:25:12,431392][I][examples/minimal:51:__main__] iter=740 loss=688.560852 dt=0.005218 dtf=0.001016 dtb=0.004203
      [2025-06-02 08:25:12,489897][I][examples/minimal:51:__main__] iter=750 loss=687.129883 dt=0.005418 dtf=0.001091 dtb=0.004327
      [2025-06-02 08:25:12,548527][I][examples/minimal:51:__main__] iter=760 loss=684.507507 dt=0.005340 dtf=0.001128 dtb=0.004211
      [2025-06-02 08:25:12,607235][I][examples/minimal:51:__main__] iter=770 loss=674.559021 dt=0.005275 dtf=0.001087 dtb=0.004188
      [2025-06-02 08:25:12,666059][I][examples/minimal:51:__main__] iter=780 loss=690.597290 dt=0.005311 dtf=0.001068 dtb=0.004243
      [2025-06-02 08:25:12,724778][I][examples/minimal:51:__main__] iter=790 loss=675.396240 dt=0.005521 dtf=0.001100 dtb=0.004422
      [2025-06-02 08:25:12,783613][I][examples/minimal:51:__main__] iter=800 loss=673.097961 dt=0.005453 dtf=0.001320 dtb=0.004134
      [2025-06-02 08:25:12,842443][I][examples/minimal:51:__main__] iter=810 loss=679.685730 dt=0.005444 dtf=0.001118 dtb=0.004326
      [2025-06-02 08:25:12,901496][I][examples/minimal:51:__main__] iter=820 loss=673.053711 dt=0.005300 dtf=0.001088 dtb=0.004212
      [2025-06-02 08:25:12,960154][I][examples/minimal:51:__main__] iter=830 loss=680.830994 dt=0.005351 dtf=0.001112 dtb=0.004239
      [2025-06-02 08:25:13,018906][I][examples/minimal:51:__main__] iter=840 loss=691.692932 dt=0.005299 dtf=0.001091 dtb=0.004208
      [2025-06-02 08:25:13,077564][I][examples/minimal:51:__main__] iter=850 loss=674.963257 dt=0.005420 dtf=0.001105 dtb=0.004315
      [2025-06-02 08:25:13,136279][I][examples/minimal:51:__main__] iter=860 loss=684.604980 dt=0.005302 dtf=0.001107 dtb=0.004195
      [2025-06-02 08:25:13,194978][I][examples/minimal:51:__main__] iter=870 loss=696.048218 dt=0.005365 dtf=0.001101 dtb=0.004264
      [2025-06-02 08:25:13,253730][I][examples/minimal:51:__main__] iter=880 loss=679.293457 dt=0.005284 dtf=0.001077 dtb=0.004207
      [2025-06-02 08:25:13,312501][I][examples/minimal:51:__main__] iter=890 loss=679.364197 dt=0.005558 dtf=0.001110 dtb=0.004448
      [2025-06-02 08:25:13,371428][I][examples/minimal:51:__main__] iter=900 loss=675.571289 dt=0.005417 dtf=0.001344 dtb=0.004074
      [2025-06-02 08:25:13,430037][I][examples/minimal:51:__main__] iter=910 loss=683.194458 dt=0.005323 dtf=0.001077 dtb=0.004246
      [2025-06-02 08:25:13,488662][I][examples/minimal:51:__main__] iter=920 loss=689.960022 dt=0.005316 dtf=0.001103 dtb=0.004213
      [2025-06-02 08:25:13,547197][I][examples/minimal:51:__main__] iter=930 loss=693.487732 dt=0.005348 dtf=0.001097 dtb=0.004251
      [2025-06-02 08:25:13,606009][I][examples/minimal:51:__main__] iter=940 loss=686.816406 dt=0.005356 dtf=0.001087 dtb=0.004269
      [2025-06-02 08:25:13,664743][I][examples/minimal:51:__main__] iter=950 loss=670.237244 dt=0.005430 dtf=0.001109 dtb=0.004322
      [2025-06-02 08:25:13,723404][I][examples/minimal:51:__main__] iter=960 loss=700.734741 dt=0.005330 dtf=0.001073 dtb=0.004257
      [2025-06-02 08:25:13,782161][I][examples/minimal:51:__main__] iter=970 loss=676.606628 dt=0.005324 dtf=0.001075 dtb=0.004249
      [2025-06-02 08:25:13,840797][I][examples/minimal:51:__main__] iter=980 loss=687.955688 dt=0.005335 dtf=0.001105 dtb=0.004230
      [2025-06-02 08:25:13,900017][I][examples/minimal:51:__main__] iter=990 loss=689.839966 dt=0.005527 dtf=0.001089 dtb=0.004438
      [2025-06-02 08:25:13,953099][I][ezpz/dist:144] `train`((DistributedDataParallel(
      (module): SequentialLinearNet(
          (layers): Sequential(
          (0): Linear(in_features=128, out_features=256, bias=True)
          (1): ReLU()
          (2): Linear(in_features=256, out_features=512, bias=True)
          (3): ReLU()
          (4): Linear(in_features=512, out_features=1024, bias=True)
          (5): ReLU()
          (6): Linear(in_features=1024, out_features=2048, bias=True)
          (7): ReLU()
          (8): Linear(in_features=2048, out_features=1024, bias=True)
          (9): ReLU()
          (10): Linear(in_features=1024, out_features=512, bias=True)
          (11): ReLU()
          (12): Linear(in_features=512, out_features=256, bias=True)
          (13): ReLU()
          (14): Linear(in_features=256, out_features=128, bias=True)
          (15): ReLU()
          (16): Linear(in_features=128, out_features=128, bias=True)
          )
      )
      ), Adam (
      Parameter Group 0
          amsgrad: False
          betas: (0.9, 0.999)
          capturable: False
          differentiable: False
          eps: 1e-08
          foreach: None
          fused: None
          lr: 0.001
          maximize: False
          weight_decay: 0
      ))) took: dt=6.3856s
      [2025-06-02 08:25:15,312954][I][ezpz/history:721] Saving iter plot to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/mplot
      [2025-06-02 08:25:15,581086][I][ezpz/history:721] Saving loss plot to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/mplot
      [2025-06-02 08:25:15,860783][I][ezpz/history:721] Saving dt plot to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/mplot
      [2025-06-02 08:25:16,124027][I][ezpz/history:721] Saving dtf plot to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/mplot
      [2025-06-02 08:25:16,380159][I][ezpz/history:721] Saving dtb plot to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/mplot
      [2025-06-02 08:25:16,627648][I][ezpz/history:618] Saving tplots to /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/tplot
                          loss [2025-06-02-082516]
            β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      2326.0─                       ▐                            β”‚
            β”‚                       β–Ÿ                            β”‚
      2048.7─                       β–ˆ                            β”‚
            β”‚                       β–ˆ                            β”‚
            β”‚                       β–ˆ                            β”‚
      1771.5─                       β–ˆ                            β”‚
            β”‚                       β–ˆ                            β”‚
      1494.2─                       β–ˆ                            β”‚
            β”‚                       β–ˆβ–Œ                           β”‚
      1216.9─                       β–ˆβ–Œ                           β”‚
            β”‚                       β–ˆβ–Œ                           β”‚
            β”‚β––                     β–β–ˆβ–Œ                           β”‚
       939.7β”€β–Œ                     β–β–ˆβ–Œ                           β”‚
            β”‚β–™                     β–β–›β–ˆ                           β”‚
       662.4β”€β–β–ˆβ–™β–™β–™β–ˆβ–™β–Ÿβ–Ÿβ–ˆβ–ˆβ–™β–Ÿβ–™β–„β–„β–„β–™β–ˆβ–„β–Ÿβ–™β–Ÿβ–Œβ–€β–ˆβ–ˆβ–ˆβ–ˆβ–Ÿβ–ˆβ–Ÿβ–ˆβ–ˆβ–ˆβ–™β–ˆβ–Ÿβ–ˆβ–„β–„β–ˆβ–™β–ˆβ–ˆβ–™β–„β–ˆβ–™β–ˆβ–™β–™β”‚
            β””β”¬β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”˜
            10 61   152    301 374 443 516    682 746 805   937
      loss                           iter
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/tplot/loss.txt
                          dt [2025-06-02-082516]
             β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      0.00665─        β–Œ                                          β”‚
             β”‚        β–Œ                                          β”‚
      0.00631─        β–Œβ––                                         β”‚
             β”‚        β–Œβ–Œ                                         β”‚
             β”‚        β–Œβ–Œ                                         β”‚
      0.00597─        β–Œβ–Œ                                         β”‚
             β”‚     β––  β–Œβ–Œ              β––                          β”‚
      0.00563─  β––  β–™β–„ β–Œβ–™β–„  β–—  β–—  β–—β––β–™ β–™β–Œβ–—  β–— β–„β–„   β–— β–– β–„β–„ β––  β–—β–„  β–— β”‚
             β”‚β––β––β–Œ β–Ÿβ–ˆβ–ˆβ–„β–ˆβ–ˆβ–ˆβ–ˆβ–Ÿβ–Ÿβ–ˆβ–™β–Ÿβ–ˆβ–Ÿβ–ˆβ–™β–ˆβ–™β–ˆβ–ˆβ–ˆβ–ˆβ–™β–Ÿβ–ˆβ–ˆβ–ˆβ–Ÿβ–—β–ˆβ–Ÿβ–„β–ˆβ–„β–ˆβ–ˆβ–™β–ˆβ––β–Ÿβ–ˆβ–ˆβ–ˆβ–Ÿβ–ˆβ–ˆβ”‚
      0.00529β”€β–ˆβ–ˆβ–Œβ–Ÿβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
             β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–β–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–œβ–ˆβ–ˆβ–ˆβ–ˆβ–œβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œβ”‚
             β”‚β–ˆβ–ˆβ–ˆβ–€β–ˆβ–œβ–ˆβ–Œβ–β–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–β–ˆβ–œβ–ˆβ–ˆβ–β–ˆβ–ˆβ–ˆβ–ˆβ–β–ˆβ–ˆβ–ˆβ–ˆβ–β–ˆβ–ˆβ–ˆβ–ˆβ–Œβ–ˆβ–ˆβ–ˆβ–ˆβ–Œβ–ˆβ–ˆβ–ˆβ–ˆβ–Œβ–ˆβ–Œβ”‚
      0.00495─     ▝ β–˜  β–€β–œβ–ˆβ–ˆβ–œβ–ˆβ–€β–œ β–€β–β–˜β–€β–β–ˆβ–˜β–˜β–€ β–€β–β–˜β–β–β–œβ–ˆβ–˜β–œβ–˜ β–˜β–β–€β–˜ β–€β–β–β–˜β–˜β–˜β”‚
             β”‚           β–β–ˆβ–ˆβ–β–ˆ ▐                β–β–ˆ ▐             β”‚
      0.00461─           β–β–Œβ–β–β–› ▐                 β–˜ ▐             β”‚
             β””β”¬β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”˜
             10 61   152    301    443 516 601 682 746  844 937
      dt                             iter
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/tplot/dt.txt
                          dt [2025-06-02-082516]
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      648─                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
         β”‚                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
      540─                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
         β”‚                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
         β”‚                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
      432─                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
         β”‚                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
      324─                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
         β”‚                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
      216─                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                 β”‚
         β”‚                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                            β”‚
         β”‚                 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                            β”‚
      108─           β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                            β”‚
         β”‚      β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                            β”‚
        0β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ      β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
         β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
         0.00452      0.00507      0.00563       0.00618   0.00674
      freq                          dt
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/tplot/dt-hist.txt
                          dtf [2025-06-02-082516]
              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      0.001399─    ▐                                             β”‚
              β”‚    ▐▗   β–—    β–—     β–—    ▐        ▐▗    β–—   β–—β–—    β”‚
      0.001321─ β–Œ  ▐▐   ▐▐   ▐▗   ▐▐   ▐▐   ▐▐   ▐▐   ▗▐   ▐▐    β”‚
              β”‚ β–Œ  ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐    β”‚
              β”‚ β–Œ  ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐    β”‚
      0.001243─ β–Œ  ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐   ▐▐    β”‚
              β”‚ β–Œβ––β–—β–β–Ÿ   ▐▐   ▐▐   ▐▐   ▐▐▖  ▐▐▖  ▐▐  ▗▐▐  ▗▐▐  β–– β”‚
      0.001164β”€β–—β–™β–Œβ–Ÿβ–β–ˆβ–Ÿβ–β––β–Ÿβ–Ÿ ▐▗▐▐ β–—β–ˆβ–Ÿβ–Ÿβ–™β–Ÿβ–—β–β–Ÿβ–Œβ–Ÿβ–Ÿβ–β–ˆβ–™  β–β–Ÿ β–„β–ˆβ–Ÿβ–ˆβ–β–™β–Ÿβ–β–ˆβ–™β–Ÿβ–™β–Œβ”‚
              β”‚β–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œβ–ˆβ–β–Ÿβ–β–ˆβ–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–β–ˆβ–Œβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œβ”‚
      0.001086β”€β–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ÿβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
              β”‚β–β–β–˜β–€β–˜β–β–β–›β–€β–€β–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–›β–β–€β–€β–€β–β–€β–€β–›β–€β–˜β–β–β–€β–˜β–€β–β–ˆβ–œβ–ˆβ–œβ–€β–β–β–€β–œβ–€β–€β–€ β–€β–œβ–β”‚
              │▐         β–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ       β–Œ       β–β–ˆβ–β–ˆ             β”‚
      0.001008β”€β–Ÿ         β–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ       β–Œ       β–β–ˆβ–β–ˆ             β”‚
              β”‚β–ˆ          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–œβ–˜       β–Œ       β–β–›β–β–œ             β”‚
      0.000930─▝          ▝  β–˜          β–Œ       ▝                β”‚
              β””β”¬β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”˜
              10 61  152 222 301    443 516    682 746  844 937
      dtf                             iter
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/tplot/dtf.txt
                          dtf [2025-06-02-082516]
           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      724.0─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
      603.3─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
      482.7─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
      362.0─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
      241.3─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
      120.7─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                           β”‚
           β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                     β”‚
        0.0β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ          β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
           β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
          0.00091      0.00104      0.00116      0.00129   0.00142
      freq                           dtf
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/tplot/dtf-hist.txt
                          dtb [2025-06-02-082516]
             β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      0.00555─        β–Œ                                          β”‚
             β”‚        β–Œ                                          β”‚
      0.00522─        β–Œβ––                                         β”‚
             β”‚        β–Œβ–Œ                                         β”‚
             β”‚        β–Œβ–Œ                                         β”‚
      0.00489─        β–Œβ–Œ                                         β”‚
             β”‚        β–Œβ–Œ               β–—                         β”‚
      0.00456─     β–Œ  β–Œβ–™   β–—β–„β––β–—β––  β––  β––β–Œβ–        β–—β–—         β–—   β–— β”‚
             β”‚β–™ β–Œ  β–™β–ˆβ–„β–ˆβ–ˆβ–Œβ–™β–ˆβ–ˆβ–ˆβ–Œβ–ˆβ–™β–„β–ˆβ–™β–ˆβ–Œβ–ˆβ–ˆβ–ˆβ–β––β–β–™β–ˆβ–β–„ β–Ÿβ–ˆβ–Ÿβ–ˆβ––β–ˆβ–ˆβ––β–™β––β–Ÿβ–ˆβ–Œβ–„β–—β–ˆβ–ˆβ”‚
      0.00424β”€β–ˆβ–ˆβ–Œβ–Ÿβ–Œβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ÿβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–™β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
             β”‚β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–œβ–œβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–›β”‚
             β”‚β–€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–›β–β–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–œβ–ˆβ–ˆβ–ˆβ–ˆβ–œβ–ˆβ–ˆβ–ˆβ–ˆβ–œβ–ˆβ–ˆβ–ˆβ–ˆβ–œβ–ˆβ–ˆβ–ˆβ–ˆβ–›β–ˆβ–ˆβ–ˆβ–ˆβ–›β–ˆβ–ˆβ–ˆβ–ˆβ–›β–ˆβ–Œβ”‚
      0.00391─ β–›β–€ β–œβ–β–ˆβ–Œβ–β–β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–β–ˆβ–œβ–ˆβ–ˆβ–β–ˆβ–ˆβ–ˆβ–ˆβ–β–ˆβ–œβ–ˆβ–œβ–β–ˆβ–ˆβ–ˆβ–ˆβ–Œβ–ˆβ–ˆβ–ˆβ–ˆβ–Œβ–ˆβ–ˆβ–ˆβ–ˆβ–Œβ–ˆβ–Œβ”‚
             β”‚     ▝ β–˜  β–˜β–β–ˆβ–ˆβ–œβ–ˆβ–€β–œ β–€ β–˜β–€β–β–€β–˜β–˜β–˜ β–˜β–  β–β–œβ–›β–€β–œβ–˜β–β–˜ β–€β–˜ β–€  β–˜β–˜ β”‚
      0.00358─           ▝▛▝▐▛ ▐                 β–˜ ▐             β”‚
             β””β”¬β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”˜
             10 61   152    301    443 516 601 682 746  844 937
      dtb                            iter
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/tplot/dtb.txt
                          dtb [2025-06-02-082516]
           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      664.0─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
      553.3─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
      442.7─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
      332.0─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
      221.3─                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                β”‚
           β”‚                β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                           β”‚
      110.7─     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                           β”‚
           β”‚     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                           β”‚
        0.0β”€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ”‚
           β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”˜
          0.00350      0.00403      0.00456      0.00510   0.00563
      freq                           dtb
      text saved in /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/plots/tplot/dtb-hist.txt
      [2025-06-02 08:25:16,757339][I][ezpz/utils:224] Saving dataset to: /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/outputs/History-2025-06-02-082513/2025-06-02-082513/History-2025-06-02-082513/dataset_dataset.h5
      [2025-06-02 08:25:16,769431][I][examples/minimal:103:__main__] dataset=<xarray.Dataset> Size: 47kB
      Dimensions:  (draw: 989)
      Coordinates:
      * draw     (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 982 983 984 985 986 987 988
      Data variables:
          iter     (draw) int64 8kB 11 12 13 14 15 16 17 ... 994 995 996 997 998 999
          loss     (draw) float64 8kB 1.031e+03 898.9 861.3 ... 673.5 680.4 678.1
          dt       (draw) float64 8kB 0.005432 0.005025 0.005267 ... 0.005351 0.005353
          dtf      (draw) float64 8kB 0.000955 0.000986 0.000986 ... 0.001077 0.001111
          dtb      (draw) float64 8kB 0.004477 0.004039 0.004281 ... 0.004274 0.004242
      wandb:
      wandb: You can sync this run to the cloud by running:
      wandb: wandb sync /lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/wandb/offline-run-20250602_082455-err2dwwn
      wandb: Find logs at: ../../../../../../lus/flare/projects/datascience/foremans/projects/saforem2/ezpz/wandb/offline-run-20250602_082455-err2dwwn/logs
      Application 51803e72 resources: utime=1016s stime=189s maxrss=3923136KB inblock=509002 oublock=2760 minflt=10027248 majflt=27746 nvcsw=558010 nivcsw=1523810
      [2025-06-02 08:25:19,307273][I][ezpz/launch:201] Execution finished @ 2025-06-02-082519
      [2025-06-02 08:25:19,308393][I][ezpz/launch:202] Command took 38.44 seconds to run. Exiting.
      took: 0h:00m:50s

    😎 2 ez.

πŸ§‘β€πŸ’» Hands On

Footnotes

  1. This will πŸͺ„ automagically source ezpz/bin/utils.sh and (&&) call ezpz_setup_env to setup your python environment. ↩

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •