Skip to content

feat: add solutions to lc problem: No.3574 #4486

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 12, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
186 changes: 182 additions & 4 deletions solution/3500-3599/3574.Maximize Subarray GCD Score/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -100,32 +100,210 @@ tags:

<!-- solution:start -->

### 方法一
### 方法一:枚举 + 数学

我们注意到,题目中数组的长度 $n \leq 1500$,因此,我们可以枚举所有的子数组。对于每个子数组,计算其 GCD 分数,找出最大值即为答案。

由于每个数最多只能翻倍一次,那么子数组的 GCD 最多也只能乘以 $2$,因此,我们需要统计子数组中每个数的因子 $2$ 的个数的最小值,以及这个最小值的出现次数。如果次数大于 $k$,则 GCD 分数为 GCD,否则 GCD 分数为 GCD 乘以 $2$。

因此,我们可以预处理每个数的因子 $2$ 的个数,然后在枚举子数组时,维护当前子数组的 GCD、最小因子 $2$ 的个数以及其出现次数即可。

时间复杂度 $O(n^2 \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $\textit{nums}$ 的长度。

<!-- tabs:start -->

#### Python3

```python

class Solution:
def maxGCDScore(self, nums: List[int], k: int) -> int:
n = len(nums)
cnt = [0] * n
for i, x in enumerate(nums):
while x % 2 == 0:
cnt[i] += 1
x //= 2
ans = 0
for l in range(n):
g = 0
mi = inf
t = 0
for r in range(l, n):
g = gcd(g, nums[r])
if cnt[r] < mi:
mi = cnt[r]
t = 1
elif cnt[r] == mi:
t += 1
ans = max(ans, (g if t > k else g * 2) * (r - l + 1))
return ans
```

#### Java

```java

class Solution {
public long maxGCDScore(int[] nums, int k) {
int n = nums.length;
int[] cnt = new int[n];
for (int i = 0; i < n; ++i) {
for (int x = nums[i]; x % 2 == 0; x /= 2) {
++cnt[i];
}
}
long ans = 0;
for (int l = 0; l < n; ++l) {
int g = 0;
int mi = 1 << 30;
int t = 0;
for (int r = l; r < n; ++r) {
g = gcd(g, nums[r]);
if (cnt[r] < mi) {
mi = cnt[r];
t = 1;
} else if (cnt[r] == mi) {
++t;
}
ans = Math.max(ans, (r - l + 1L) * (t > k ? g : g * 2));
}
}
return ans;
}

private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
```

#### C++

```cpp

class Solution {
public:
long long maxGCDScore(vector<int>& nums, int k) {
int n = nums.size();
vector<int> cnt(n);
for (int i = 0; i < n; ++i) {
for (int x = nums[i]; x % 2 == 0; x /= 2) {
++cnt[i];
}
}

long long ans = 0;
for (int l = 0; l < n; ++l) {
int g = 0;
int mi = INT32_MAX;
int t = 0;
for (int r = l; r < n; ++r) {
g = gcd(g, nums[r]);
if (cnt[r] < mi) {
mi = cnt[r];
t = 1;
} else if (cnt[r] == mi) {
++t;
}
long long score = static_cast<long long>(r - l + 1) * (t > k ? g : g * 2);
ans = max(ans, score);
}
}

return ans;
}
};
```

#### Go

```go
func maxGCDScore(nums []int, k int) int64 {
n := len(nums)
cnt := make([]int, n)
for i, x := range nums {
for x%2 == 0 {
cnt[i]++
x /= 2
}
}

ans := 0
for l := 0; l < n; l++ {
g := 0
mi := math.MaxInt32
t := 0
for r := l; r < n; r++ {
g = gcd(g, nums[r])
if cnt[r] < mi {
mi = cnt[r]
t = 1
} else if cnt[r] == mi {
t++
}
length := r - l + 1
score := g * length
if t <= k {
score *= 2
}
ans = max(ans, score)
}
}

return int64(ans)
}

func gcd(a, b int) int {
for b != 0 {
a, b = b, a%b
}
return a
}
```

#### TypeScript

```ts
function maxGCDScore(nums: number[], k: number): number {
const n = nums.length;
const cnt: number[] = Array(n).fill(0);

for (let i = 0; i < n; ++i) {
let x = nums[i];
while (x % 2 === 0) {
cnt[i]++;
x /= 2;
}
}

let ans = 0;
for (let l = 0; l < n; ++l) {
let g = 0;
let mi = Number.MAX_SAFE_INTEGER;
let t = 0;
for (let r = l; r < n; ++r) {
g = gcd(g, nums[r]);
if (cnt[r] < mi) {
mi = cnt[r];
t = 1;
} else if (cnt[r] === mi) {
t++;
}
const len = r - l + 1;
const score = (t > k ? g : g * 2) * len;
ans = Math.max(ans, score);
}
}

return ans;
}

function gcd(a: number, b: number): number {
while (b !== 0) {
const temp = b;
b = a % b;
a = temp;
}
return a;
}
```

<!-- tabs:end -->
Expand Down
Loading