Description
Name and Version
./llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 4 CUDA devices:
Device 0: Tesla K80, compute capability 3.7, VMM: yes
Device 1: Tesla K80, compute capability 3.7, VMM: yes
Device 2: Tesla K80, compute capability 3.7, VMM: yes
Device 3: Tesla K80, compute capability 3.7, VMM: yes
version: 5261 (cb06a3c)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
Operating systems
Linux
GGML backends
CUDA
Hardware
K80 x2 (x4 GPUs)
Models
Qwen3-30B-A3B-Q8_0
Problem description & steps to reproduce
I'm trying to row split a model across multiple GPUs (2x K80s, each of which has 2x GPUs, so 4x GPUs total). However, it doesn't seem to be splitting them properly. When loading the model, I get this output:
load_tensors: CUDA0_Split model buffer size = 248.62 MiB
load_tensors: CUDA1_Split model buffer size = 241.50 MiB
load_tensors: CUDA2_Split model buffer size = 229.50 MiB
load_tensors: CUDA3_Split model buffer size = 536.67 MiB
load_tensors: CUDA0 model buffer size = 7969.22 MiB
load_tensors: CUDA1 model buffer size = 7344.20 MiB
load_tensors: CUDA2 model buffer size = 7356.20 MiB
load_tensors: CUDA3 model buffer size = 6732.19 MiB
load_tensors: CPU_Mapped model buffer size = 315.30 MiB
Based on what I've seem from other people, the "CUDAX_Split model buffer size" should be much bigger, more like ~7GB. When I use a model that can fit in one GPU vs. splitting it across multiple GPUs, I'm not getting any speed up, which also indicates it isn't splitting the model across rows properly. Any ideas?
First Bad Commit
No response
Relevant log output
/llama.cpp/build/bin/llama-server -m /mnt/raid5/Qwen3-30B-A3B-GGUF/Qwen3-30B-A3B-Q8_0.gguf --port 8080 --temp 0.6 --seed 3407 --host 0.0.0.0 -ts 1,1,1,1 --n-gpu-layers 1000 --split-mode row --ctx_size 30000
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 4 CUDA devices:
Device 0: Tesla K80, compute capability 3.7, VMM: yes
Device 1: Tesla K80, compute capability 3.7, VMM: yes
Device 2: Tesla K80, compute capability 3.7, VMM: yes
Device 3: Tesla K80, compute capability 3.7, VMM: yes
build: 5261 (cb06a3c3) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
system info: n_threads = 28, n_threads_batch = 28, total_threads = 56
system_info: n_threads = 28 (n_threads_batch = 28) / 56 | CUDA : USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 0.0.0.0, port: 8080, http threads: 55
main: loading model
srv load_model: loading model '/mnt/raid5/Qwen3-30B-A3B-GGUF/Qwen3-30B-A3B-Q8_0.gguf'
llama_model_load_from_file_impl: using device CUDA0 (Tesla K80) - 11353 MiB free
llama_model_load_from_file_impl: using device CUDA1 (Tesla K80) - 11353 MiB free
llama_model_load_from_file_impl: using device CUDA2 (Tesla K80) - 11353 MiB free
llama_model_load_from_file_impl: using device CUDA3 (Tesla K80) - 11353 MiB free
llama_model_loader: loaded meta data with 35 key-value pairs and 579 tensors from /mnt/raid5/Qwen3-30B-A3B-GGUF/Qwen3-30B-A3B-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3moe
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3-30B-A3B
llama_model_loader: - kv 3: general.basename str = Qwen3-30B-A3B
llama_model_loader: - kv 4: general.quantized_by str = Unsloth
llama_model_loader: - kv 5: general.size_label str = 30B-A3B
llama_model_loader: - kv 6: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 7: qwen3moe.block_count u32 = 48
llama_model_loader: - kv 8: qwen3moe.context_length u32 = 40960
llama_model_loader: - kv 9: qwen3moe.embedding_length u32 = 2048
llama_model_loader: - kv 10: qwen3moe.feed_forward_length u32 = 6144
llama_model_loader: - kv 11: qwen3moe.attention.head_count u32 = 32
llama_model_loader: - kv 12: qwen3moe.attention.head_count_kv u32 = 4
llama_model_loader: - kv 13: qwen3moe.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 14: qwen3moe.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 15: qwen3moe.expert_used_count u32 = 8
llama_model_loader: - kv 16: qwen3moe.attention.key_length u32 = 128
llama_model_loader: - kv 17: qwen3moe.attention.value_length u32 = 128
llama_model_loader: - kv 18: qwen3moe.expert_count u32 = 128
llama_model_loader: - kv 19: qwen3moe.expert_feed_forward_length u32 = 768
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 25: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 151654
llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 28: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 29: general.quantization_version u32 = 2
llama_model_loader: - kv 30: general.file_type u32 = 7
llama_model_loader: - kv 31: quantize.imatrix.file str = Qwen3-30B-A3B-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv 32: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-30B-A3B.txt
llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 384
llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 685
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q8_0: 338 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 30.25 GiB (8.51 BPW)
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch = qwen3moe
print_info: vocab_only = 0
print_info: n_ctx_train = 40960
print_info: n_embd = 2048
print_info: n_layer = 48
print_info: n_head = 32
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 8
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 6144
print_info: n_expert = 128
print_info: n_expert_used = 8
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 40960
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 30B.A3B
print_info: model params = 30.53 B
print_info: general.name = Qwen3-30B-A3B
print_info: n_ff_exp = 768
print_info: vocab type = BPE
print_info: n_vocab = 151936
print_info: n_merges = 151387
print_info: BOS token = 11 ','
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151654 '<|vision_pad|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors: CUDA0_Split model buffer size = 248.62 MiB
load_tensors: CUDA1_Split model buffer size = 241.50 MiB
load_tensors: CUDA2_Split model buffer size = 229.50 MiB
load_tensors: CUDA3_Split model buffer size = 536.67 MiB
load_tensors: CUDA0 model buffer size = 7969.22 MiB
load_tensors: CUDA1 model buffer size = 7344.20 MiB
load_tensors: CUDA2 model buffer size = 7356.20 MiB
load_tensors: CUDA3 model buffer size = 6732.19 MiB
load_tensors: CPU_Mapped model buffer size = 315.30 MiB
...................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 30000
llama_context: n_ctx_per_seq = 30000
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (30000) < n_ctx_train (40960) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 0.58 MiB
init: kv_size = 30016, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1
init: CUDA0 KV buffer size = 762.12 MiB
init: CUDA1 KV buffer size = 703.50 MiB
init: CUDA2 KV buffer size = 703.50 MiB
init: CUDA3 KV buffer size = 644.88 MiB
llama_context: KV self size = 2814.00 MiB, K (f16): 1407.00 MiB, V (f16): 1407.00 MiB
llama_context: CUDA0 compute buffer size = 1958.63 MiB
llama_context: CUDA1 compute buffer size = 1958.63 MiB
llama_context: CUDA2 compute buffer size = 1958.63 MiB
llama_context: CUDA3 compute buffer size = 1958.63 MiB
llama_context: CUDA_Host compute buffer size = 62.63 MiB
llama_context: graph nodes = 3126
llama_context: graph splits = 5
common_init_from_params: setting dry_penalty_last_n to ctx_size = 30016
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 30016
main: model loaded
main: chat template, chat_template: {%- if tools %}
{{- '<|im_start|>system\n' }}
{%- if messages[0].role == 'system' %}
{{- messages[0].content + '\n\n' }}
{%- endif %}
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
{%- for tool in tools %}
{{- "\n" }}
{{- tool | tojson }}
{%- endfor %}
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
{%- if messages[0].role == 'system' %}
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
{%- for forward_message in messages %}
{%- set index = (messages|length - 1) - loop.index0 %}
{%- set message = messages[index] %}
{%- set current_content = message.content if message.content is defined and message.content is not none else '' %}
{%- set tool_start = '<tool_response>' %}
{%- set tool_start_length = tool_start|length %}
{%- set start_of_message = current_content[:tool_start_length] %}
{%- set tool_end = '</tool_response>' %}
{%- set tool_end_length = tool_end|length %}
{%- set start_pos = (current_content|length) - tool_end_length %}
{%- if start_pos < 0 %}
{%- set start_pos = 0 %}
{%- endif %}
{%- set end_of_message = current_content[start_pos:] %}
{%- if ns.multi_step_tool and message.role == "user" and not(start_of_message == tool_start and end_of_message == tool_end) %}
{%- set ns.multi_step_tool = false %}
{%- set ns.last_query_index = index %}
{%- endif %}
{%- endfor %}
{%- for message in messages %}
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
{%- elif message.role == "assistant" %}
{%- set m_content = message.content if message.content is defined and message.content is not none else '' %}
{%- set content = m_content %}
{%- set reasoning_content = '' %}
{%- if message.reasoning_content is defined and message.reasoning_content is not none %}
{%- set reasoning_content = message.reasoning_content %}
{%- else %}
{%- if '</think>' in m_content %}
{%- set content = (m_content.split('</think>')|last).lstrip('\n') %}
{%- set reasoning_content = (m_content.split('</think>')|first).rstrip('\n') %}
{%- set reasoning_content = (reasoning_content.split('<think>')|last).lstrip('\n') %}
{%- endif %}
{%- endif %}
{%- if loop.index0 > ns.last_query_index %}
{%- if loop.last or (not loop.last and (not reasoning_content.strip() == '')) %}
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
{%- else %}
{{- '<|im_start|>' + message.role + '\n' + content }}
{%- endif %}
{%- else %}
{{- '<|im_start|>' + message.role + '\n' + content }}
{%- endif %}
{%- if message.tool_calls %}
{%- for tool_call in message.tool_calls %}
{%- if (loop.first and content) or (not loop.first) %}
{{- '\n' }}
{%- endif %}
{%- if tool_call.function %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- '<tool_call>\n{"name": "' }}
{{- tool_call.name }}
{{- '", "arguments": ' }}
{%- if tool_call.arguments is string %}
{{- tool_call.arguments }}
{%- else %}
{{- tool_call.arguments | tojson }}
{%- endif %}
{{- '}\n</tool_call>' }}
{%- endfor %}
{%- endif %}
{{- '<|im_end|>\n' }}
{%- elif message.role == "tool" %}
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
{{- '<|im_start|>user' }}
{%- endif %}
{{- '\n<tool_response>\n' }}
{{- message.content }}
{{- '\n</tool_response>' }}
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|im_start|>assistant\n' }}
{%- if enable_thinking is defined and enable_thinking is false %}
{{- '<think>\n\n</think>\n\n' }}
{%- endif %}
{%- endif %}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://0.0.0.0:8080 - starting the main loop
srv update_slots: all slots are idle