|
| 1 | +/** |
| 2 | + * Provides inferences of the form: `e` equals `b + v` modulo `m` where `e` is |
| 3 | + * an expression, `b` is a `Bound` (typically zero or the value of an SSA |
| 4 | + * variable), and `v` is an integer in the range `[0 .. m-1]`. |
| 5 | + */ |
| 6 | + |
| 7 | +private import ModulusAnalysisSpecific::Private |
| 8 | +private import BoundCommon |
| 9 | +private import SsaReadPositionCommon |
| 10 | + |
| 11 | +/** |
| 12 | + * Holds if `e + delta` equals `v` at `pos`. |
| 13 | + */ |
| 14 | +private predicate valueFlowStepSsa(SsaVariable v, SsaReadPosition pos, Expr e, int delta) { |
| 15 | + ssaUpdateStep(v, e, delta) and pos.hasReadOfVar(v) |
| 16 | + or |
| 17 | + exists(Guard guard, boolean testIsTrue | |
| 18 | + pos.hasReadOfVar(v) and |
| 19 | + guard = eqFlowCond(v, e, delta, true, testIsTrue) and |
| 20 | + guardDirectlyControlsSsaRead(guard, pos, testIsTrue) |
| 21 | + ) |
| 22 | +} |
| 23 | + |
| 24 | +/** |
| 25 | + * Holds if `add` is the addition of `larg` and `rarg`, neither of which are |
| 26 | + * `ConstantIntegerExpr`s. |
| 27 | + */ |
| 28 | +private predicate nonConstAddition(Expr add, Expr larg, Expr rarg) { |
| 29 | + ( |
| 30 | + exists(AddExpr a | a = add | |
| 31 | + larg = a.getLeftOperand() and |
| 32 | + rarg = a.getRightOperand() |
| 33 | + ) |
| 34 | + or |
| 35 | + exists(AssignAddExpr a | a = add | |
| 36 | + larg = a.getDest() and |
| 37 | + rarg = a.getRhs() |
| 38 | + ) |
| 39 | + ) and |
| 40 | + not larg instanceof ConstantIntegerExpr and |
| 41 | + not rarg instanceof ConstantIntegerExpr |
| 42 | +} |
| 43 | + |
| 44 | +/** |
| 45 | + * Holds if `sub` is the subtraction of `larg` and `rarg`, where `rarg` is not |
| 46 | + * a `ConstantIntegerExpr`. |
| 47 | + */ |
| 48 | +private predicate nonConstSubtraction(Expr sub, Expr larg, Expr rarg) { |
| 49 | + ( |
| 50 | + exists(SubExpr s | s = sub | |
| 51 | + larg = s.getLeftOperand() and |
| 52 | + rarg = s.getRightOperand() |
| 53 | + ) |
| 54 | + or |
| 55 | + exists(AssignSubExpr s | s = sub | |
| 56 | + larg = s.getDest() and |
| 57 | + rarg = s.getRhs() |
| 58 | + ) |
| 59 | + ) and |
| 60 | + not rarg instanceof ConstantIntegerExpr |
| 61 | +} |
| 62 | + |
| 63 | +/** Gets an expression that is the remainder modulo `mod` of `arg`. */ |
| 64 | +private Expr modExpr(Expr arg, int mod) { |
| 65 | + exists(RemExpr rem | |
| 66 | + result = rem and |
| 67 | + arg = rem.getLeftOperand() and |
| 68 | + rem.getRightOperand().(ConstantIntegerExpr).getIntValue() = mod and |
| 69 | + mod >= 2 |
| 70 | + ) |
| 71 | + or |
| 72 | + exists(ConstantIntegerExpr c | |
| 73 | + mod = 2.pow([1 .. 30]) and |
| 74 | + c.getIntValue() = mod - 1 and |
| 75 | + result.(AndBitwiseExpr).hasOperands(arg, c) |
| 76 | + ) |
| 77 | +} |
| 78 | + |
| 79 | +/** |
| 80 | + * Gets a guard that tests whether `v` is congruent with `val` modulo `mod` on |
| 81 | + * its `testIsTrue` branch. |
| 82 | + */ |
| 83 | +private Guard moduloCheck(SsaVariable v, int val, int mod, boolean testIsTrue) { |
| 84 | + exists(Expr rem, ConstantIntegerExpr c, int r, boolean polarity | |
| 85 | + result.isEquality(rem, c, polarity) and |
| 86 | + c.getIntValue() = r and |
| 87 | + rem = modExpr(v.getAUse(), mod) and |
| 88 | + ( |
| 89 | + testIsTrue = polarity and val = r |
| 90 | + or |
| 91 | + testIsTrue = polarity.booleanNot() and |
| 92 | + mod = 2 and |
| 93 | + val = 1 - r and |
| 94 | + (r = 0 or r = 1) |
| 95 | + ) |
| 96 | + ) |
| 97 | +} |
| 98 | + |
| 99 | +/** |
| 100 | + * Holds if a guard ensures that `v` at `pos` is congruent with `val` modulo `mod`. |
| 101 | + */ |
| 102 | +private predicate moduloGuardedRead(SsaVariable v, SsaReadPosition pos, int val, int mod) { |
| 103 | + exists(Guard guard, boolean testIsTrue | |
| 104 | + pos.hasReadOfVar(v) and |
| 105 | + guard = moduloCheck(v, val, mod, testIsTrue) and |
| 106 | + guardControlsSsaRead(guard, pos, testIsTrue) |
| 107 | + ) |
| 108 | +} |
| 109 | + |
| 110 | +/** Holds if `factor` is a power of 2 that divides `mask`. */ |
| 111 | +bindingset[mask] |
| 112 | +private predicate andmaskFactor(int mask, int factor) { |
| 113 | + mask % factor = 0 and |
| 114 | + factor = 2.pow([1 .. 30]) |
| 115 | +} |
| 116 | + |
| 117 | +/** Holds if `e` is evenly divisible by `factor`. */ |
| 118 | +private predicate evenlyDivisibleExpr(Expr e, int factor) { |
| 119 | + exists(ConstantIntegerExpr c, int k | k = c.getIntValue() | |
| 120 | + e.(MulExpr).getAnOperand() = c and factor = k.abs() and factor >= 2 |
| 121 | + or |
| 122 | + e.(AssignMulExpr).getSource() = c and factor = k.abs() and factor >= 2 |
| 123 | + or |
| 124 | + e.(LShiftExpr).getRightOperand() = c and factor = 2.pow(k) and k > 0 |
| 125 | + or |
| 126 | + e.(AssignLShiftExpr).getRhs() = c and factor = 2.pow(k) and k > 0 |
| 127 | + or |
| 128 | + e.(AndBitwiseExpr).getAnOperand() = c and factor = max(int f | andmaskFactor(k, f)) |
| 129 | + or |
| 130 | + e.(AssignAndExpr).getSource() = c and factor = max(int f | andmaskFactor(k, f)) |
| 131 | + ) |
| 132 | +} |
| 133 | + |
| 134 | +/** |
| 135 | + * Holds if `inp` is an input to `phi` along `edge` and this input has index `r` |
| 136 | + * in an arbitrary 1-based numbering of the input edges to `phi`. |
| 137 | + */ |
| 138 | +private predicate rankedPhiInput( |
| 139 | + SsaPhiNode phi, SsaVariable inp, SsaReadPositionPhiInputEdge edge, int r |
| 140 | +) { |
| 141 | + edge.phiInput(phi, inp) and |
| 142 | + edge = |
| 143 | + rank[r](SsaReadPositionPhiInputEdge e | e.phiInput(phi, _) | e order by getId(e.getOrigBlock())) |
| 144 | +} |
| 145 | + |
| 146 | +/** |
| 147 | + * Holds if `rix` is the number of input edges to `phi`. |
| 148 | + */ |
| 149 | +private predicate maxPhiInputRank(SsaPhiNode phi, int rix) { |
| 150 | + rix = max(int r | rankedPhiInput(phi, _, _, r)) |
| 151 | +} |
| 152 | + |
| 153 | +/** |
| 154 | + * Gets the remainder of `val` modulo `mod`. |
| 155 | + * |
| 156 | + * For `mod = 0` the result equals `val` and for `mod > 1` the result is within |
| 157 | + * the range `[0 .. mod-1]`. |
| 158 | + */ |
| 159 | +bindingset[val, mod] |
| 160 | +private int remainder(int val, int mod) { |
| 161 | + mod = 0 and result = val |
| 162 | + or |
| 163 | + mod > 1 and result = ((val % mod) + mod) % mod |
| 164 | +} |
| 165 | + |
| 166 | +/** |
| 167 | + * Holds if `inp` is an input to `phi` and equals `phi` modulo `mod` along `edge`. |
| 168 | + */ |
| 169 | +private predicate phiSelfModulus( |
| 170 | + SsaPhiNode phi, SsaVariable inp, SsaReadPositionPhiInputEdge edge, int mod |
| 171 | +) { |
| 172 | + exists(SsaBound phibound, int v, int m | |
| 173 | + edge.phiInput(phi, inp) and |
| 174 | + phibound.getSsa() = phi and |
| 175 | + ssaModulus(inp, edge, phibound, v, m) and |
| 176 | + mod = m.gcd(v) and |
| 177 | + mod != 1 |
| 178 | + ) |
| 179 | +} |
| 180 | + |
| 181 | +/** |
| 182 | + * Holds if `b + val` modulo `mod` is a candidate congruence class for `phi`. |
| 183 | + */ |
| 184 | +private predicate phiModulusInit(SsaPhiNode phi, Bound b, int val, int mod) { |
| 185 | + exists(SsaVariable inp, SsaReadPositionPhiInputEdge edge | |
| 186 | + edge.phiInput(phi, inp) and |
| 187 | + ssaModulus(inp, edge, b, val, mod) |
| 188 | + ) |
| 189 | +} |
| 190 | + |
| 191 | +/** |
| 192 | + * Holds if all inputs to `phi` numbered `1` to `rix` are equal to `b + val` modulo `mod`. |
| 193 | + */ |
| 194 | +private predicate phiModulusRankStep(SsaPhiNode phi, Bound b, int val, int mod, int rix) { |
| 195 | + rix = 0 and |
| 196 | + phiModulusInit(phi, b, val, mod) |
| 197 | + or |
| 198 | + exists(SsaVariable inp, SsaReadPositionPhiInputEdge edge, int v1, int m1 | |
| 199 | + mod != 1 and |
| 200 | + val = remainder(v1, mod) |
| 201 | + | |
| 202 | + exists(int v2, int m2 | |
| 203 | + rankedPhiInput(phi, inp, edge, rix) and |
| 204 | + phiModulusRankStep(phi, b, v1, m1, rix - 1) and |
| 205 | + ssaModulus(inp, edge, b, v2, m2) and |
| 206 | + mod = m1.gcd(m2).gcd(v1 - v2) |
| 207 | + ) |
| 208 | + or |
| 209 | + exists(int m2 | |
| 210 | + rankedPhiInput(phi, inp, edge, rix) and |
| 211 | + phiModulusRankStep(phi, b, v1, m1, rix - 1) and |
| 212 | + phiSelfModulus(phi, inp, edge, m2) and |
| 213 | + mod = m1.gcd(m2) |
| 214 | + ) |
| 215 | + ) |
| 216 | +} |
| 217 | + |
| 218 | +/** |
| 219 | + * Holds if `phi` is equal to `b + val` modulo `mod`. |
| 220 | + */ |
| 221 | +private predicate phiModulus(SsaPhiNode phi, Bound b, int val, int mod) { |
| 222 | + exists(int r | |
| 223 | + maxPhiInputRank(phi, r) and |
| 224 | + phiModulusRankStep(phi, b, val, mod, r) |
| 225 | + ) |
| 226 | +} |
| 227 | + |
| 228 | +/** |
| 229 | + * Holds if `v` at `pos` is equal to `b + val` modulo `mod`. |
| 230 | + */ |
| 231 | +private predicate ssaModulus(SsaVariable v, SsaReadPosition pos, Bound b, int val, int mod) { |
| 232 | + phiModulus(v, b, val, mod) and pos.hasReadOfVar(v) |
| 233 | + or |
| 234 | + b.(SsaBound).getSsa() = v and pos.hasReadOfVar(v) and val = 0 and mod = 0 |
| 235 | + or |
| 236 | + exists(Expr e, int val0, int delta | |
| 237 | + exprModulus(e, b, val0, mod) and |
| 238 | + valueFlowStepSsa(v, pos, e, delta) and |
| 239 | + val = remainder(val0 + delta, mod) |
| 240 | + ) |
| 241 | + or |
| 242 | + moduloGuardedRead(v, pos, val, mod) and b instanceof ZeroBound |
| 243 | +} |
| 244 | + |
| 245 | +/** |
| 246 | + * Holds if `e` is equal to `b + val` modulo `mod`. |
| 247 | + * |
| 248 | + * There are two cases for the modulus: |
| 249 | + * - `mod = 0`: The equality `e = b + val` is an ordinary equality. |
| 250 | + * - `mod > 1`: `val` lies within the range `[0 .. mod-1]`. |
| 251 | + */ |
| 252 | +cached |
| 253 | +predicate exprModulus(Expr e, Bound b, int val, int mod) { |
| 254 | + e = b.getExpr(val) and mod = 0 |
| 255 | + or |
| 256 | + evenlyDivisibleExpr(e, mod) and val = 0 and b instanceof ZeroBound |
| 257 | + or |
| 258 | + exists(SsaVariable v, SsaReadPositionBlock bb | |
| 259 | + ssaModulus(v, bb, b, val, mod) and |
| 260 | + e = v.getAUse() and |
| 261 | + getAnExpr(bb.getBlock()) = e |
| 262 | + ) |
| 263 | + or |
| 264 | + exists(Expr mid, int val0, int delta | |
| 265 | + exprModulus(mid, b, val0, mod) and |
| 266 | + valueFlowStep(e, mid, delta) and |
| 267 | + val = remainder(val0 + delta, mod) |
| 268 | + ) |
| 269 | + or |
| 270 | + exists(ConditionalExpr cond, int v1, int v2, int m1, int m2 | |
| 271 | + cond = e and |
| 272 | + condExprBranchModulus(cond, true, b, v1, m1) and |
| 273 | + condExprBranchModulus(cond, false, b, v2, m2) and |
| 274 | + mod = m1.gcd(m2).gcd(v1 - v2) and |
| 275 | + mod != 1 and |
| 276 | + val = remainder(v1, mod) |
| 277 | + ) |
| 278 | + or |
| 279 | + exists(Bound b1, Bound b2, int v1, int v2, int m1, int m2 | |
| 280 | + addModulus(e, true, b1, v1, m1) and |
| 281 | + addModulus(e, false, b2, v2, m2) and |
| 282 | + mod = m1.gcd(m2) and |
| 283 | + mod != 1 and |
| 284 | + val = remainder(v1 + v2, mod) |
| 285 | + | |
| 286 | + b = b1 and b2 instanceof ZeroBound |
| 287 | + or |
| 288 | + b = b2 and b1 instanceof ZeroBound |
| 289 | + ) |
| 290 | + or |
| 291 | + exists(int v1, int v2, int m1, int m2 | |
| 292 | + subModulus(e, true, b, v1, m1) and |
| 293 | + subModulus(e, false, any(ZeroBound zb), v2, m2) and |
| 294 | + mod = m1.gcd(m2) and |
| 295 | + mod != 1 and |
| 296 | + val = remainder(v1 - v2, mod) |
| 297 | + ) |
| 298 | +} |
| 299 | + |
| 300 | +private predicate condExprBranchModulus( |
| 301 | + ConditionalExpr cond, boolean branch, Bound b, int val, int mod |
| 302 | +) { |
| 303 | + exprModulus(cond.getTrueExpr(), b, val, mod) and branch = true |
| 304 | + or |
| 305 | + exprModulus(cond.getFalseExpr(), b, val, mod) and branch = false |
| 306 | +} |
| 307 | + |
| 308 | +private predicate addModulus(Expr add, boolean isLeft, Bound b, int val, int mod) { |
| 309 | + exists(Expr larg, Expr rarg | nonConstAddition(add, larg, rarg) | |
| 310 | + exprModulus(larg, b, val, mod) and isLeft = true |
| 311 | + or |
| 312 | + exprModulus(rarg, b, val, mod) and isLeft = false |
| 313 | + ) |
| 314 | +} |
| 315 | + |
| 316 | +private predicate subModulus(Expr sub, boolean isLeft, Bound b, int val, int mod) { |
| 317 | + exists(Expr larg, Expr rarg | nonConstSubtraction(sub, larg, rarg) | |
| 318 | + exprModulus(larg, b, val, mod) and isLeft = true |
| 319 | + or |
| 320 | + exprModulus(rarg, b, val, mod) and isLeft = false |
| 321 | + ) |
| 322 | +} |
0 commit comments