-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhierarchical.py
66 lines (51 loc) · 2.51 KB
/
hierarchical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
from cluster import Cluster
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
# import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram
from tools import load_stop_words, make_corpus
# tfidf model
def create_transformed_model(corpus):
count_vectorizer = CountVectorizer(max_df=0.95, min_df=2, stop_words=load_stop_words())
docs_bag_of_words = count_vectorizer.fit_transform(corpus)
docs_bag_of_words_feature_names = count_vectorizer.get_feature_names()
docs_tfidf = TfidfTransformer().fit_transform(docs_bag_of_words)
return docs_tfidf, docs_bag_of_words_feature_names
# function to draw hierarchical model
def plot_dendrogram(model, **kwargs):
# Children of hierarchical clustering
children = model.children_
# Distances between each pair of children
# Since we don't have this information, we can use a uniform one for plotting
distance = np.arange(children.shape[0])
# The number of observations contained in each cluster level
no_of_observations = np.arange(2, children.shape[0] + 2)
# Create linkage matrix and then plot the dendrogram
linkage_matrix = np.column_stack([children, distance, no_of_observations]).astype(float)
# Plot the corresponding dendrogram
dendrogram(linkage_matrix, **kwargs)
def create_cluster_members(labels, records, number_of_topics):
clusters = []
for i in range(number_of_topics):
cluster = Cluster("")
for j in range(len(labels)):
if labels[j] == i:
cluster.add_record(records[j])
cluster.title = cluster.get_records()[0].a_raw
clusters.append(cluster)
return clusters
def create_hierarchical_model(n_clusters, linkage, affinity):
return AgglomerativeClustering(n_clusters=n_clusters, linkage=linkage, affinity=affinity)
def hierarchical(records, number_of_clusters):
corpus = make_corpus(records=records)
docs_tfidf, _ = create_transformed_model(corpus)
hierarchical_model = create_hierarchical_model(n_clusters=number_of_clusters, linkage='ward', affinity='euclidean')
model = hierarchical_model.fit(docs_tfidf.toarray())
labels = model.labels_
clusters = create_cluster_members(labels=labels, records=records, number_of_topics=number_of_clusters)
# plt.title('Hierarchical Clustering Dendrogram')
# plot_dendrogram(model, labels=model.labels_)
# plt.show()
return clusters