This is for run performance report on models with bert-embedding.
from kashgari.corpus import SMP2018ECDTCorpus
train_x, train_y = SMP2018ECDTCorpus.load_data('train')
valid_x, valid_y = SMP2018ECDTCorpus.load_data('valid')
test_x, test_y = SMP2018ECDTCorpus.load_data('test')
|
model_name |
epoch |
f1-score |
precision |
recall |
time |
0 |
BiGRU_Model |
10 |
0.9335 |
0.937795 |
0.935065 |
00:33 |
1 |
BiLSTM_Model |
10 |
0.929075 |
0.930548 |
0.92987 |
00:33 |
2 |
CNN_Attention_Model |
10 |
0.862197 |
0.888507 |
0.866234 |
00:27 |
3 |
CNN_GRU_Model |
10 |
0.840024 |
0.886519 |
0.850649 |
00:28 |
4 |
CNN_LSTM_Model |
10 |
0.424649 |
0.551247 |
0.511688 |
00:27 |
5 |
CNN_Model |
10 |
0.930336 |
0.938373 |
0.931169 |
00:26 |
from kashgari.corpus import ChineseDailyNerCorpus
train_x, train_y = ChineseDailyNerCorpus.load_data('train')
valid_x, valid_y = ChineseDailyNerCorpus.load_data('valid')
test_x, test_y = ChineseDailyNerCorpus.load_data('test')
|
model_name |
epoch |
f1-score |
precision |
recall |
time |
0 |
BiGRU_Model |
10 |
0.921583 |
0.913184 |
0.930532 |
19:10 |
1 |
BiGRU_CRF_Model |
10 |
0.935163 |
0.931246 |
0.939118 |
24:30 |
2 |
BiLSTM_Model |
10 |
0.915363 |
0.906566 |
0.924418 |
19:12 |
3 |
BiLSTM_CRF_Model |
10 |
0.940539 |
0.944549 |
0.936646 |
24:31 |
4 |
CNN_LSTM_Model |
10 |
0.919783 |
0.909695 |
0.930272 |
19:07 |