Skip to content

Files

Latest commit

 

History

History

test_performance

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Performance

This is for run performance report on models with bert-embedding.

Classification

from kashgari.corpus import SMP2018ECDTCorpus

train_x, train_y = SMP2018ECDTCorpus.load_data('train')
valid_x, valid_y = SMP2018ECDTCorpus.load_data('valid')
test_x, test_y = SMP2018ECDTCorpus.load_data('test')
model_name epoch f1-score precision recall time
0 BiGRU_Model 10 0.9335 0.937795 0.935065 00:33
1 BiLSTM_Model 10 0.929075 0.930548 0.92987 00:33
2 CNN_Attention_Model 10 0.862197 0.888507 0.866234 00:27
3 CNN_GRU_Model 10 0.840024 0.886519 0.850649 00:28
4 CNN_LSTM_Model 10 0.424649 0.551247 0.511688 00:27
5 CNN_Model 10 0.930336 0.938373 0.931169 00:26

NER

from kashgari.corpus import ChineseDailyNerCorpus

train_x, train_y = ChineseDailyNerCorpus.load_data('train')
valid_x, valid_y = ChineseDailyNerCorpus.load_data('valid')
test_x, test_y = ChineseDailyNerCorpus.load_data('test')
model_name epoch f1-score precision recall time
0 BiGRU_Model 10 0.921583 0.913184 0.930532 19:10
1 BiGRU_CRF_Model 10 0.935163 0.931246 0.939118 24:30
2 BiLSTM_Model 10 0.915363 0.906566 0.924418 19:12
3 BiLSTM_CRF_Model 10 0.940539 0.944549 0.936646 24:31
4 CNN_LSTM_Model 10 0.919783 0.909695 0.930272 19:07