-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathutils_zigzag.py
338 lines (270 loc) · 9.63 KB
/
utils_zigzag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import math
import random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
#!/usr/bin/env python3
# SPDX-License-Identifier: BSD-2-Clause
# Copyright (c) 2024 abetusk
# ported from https://github.com/jakubcerveny/gilbert/tree/master
import numpy as np
def gilbert_xy2d(x, y, w, h):
"""
Generalized Hilbert ('gilbert') space-filling curve for arbitrary-sized
2D rectangular grids. Takes a discrete 2D coordinate and maps it to the
index position on the gilbert curve.
"""
if w >= h:
return gilbert_xy2d_r(0, x, y, 0, 0, w, 0, 0, h)
return gilbert_xy2d_r(0, x, y, 0, 0, 0, h, w, 0)
def sgn(x):
return -1 if x < 0 else (1 if x > 0 else 0)
def in_bounds(x, y, x_s, y_s, ax, ay, bx, by):
dx = ax + bx
dy = ay + by
if dx < 0:
if (x > x_s) or (x <= (x_s + dx)):
return False
else:
if (x < x_s) or (x >= (x_s + dx)):
return False
if dy < 0:
if (y > y_s) or (y <= (y_s + dy)):
return False
else:
if (y < y_s) or (y >= (y_s + dy)):
return False
return True
def gilbert_xy2d_r(cur_idx, x_dst, y_dst, x, y, ax, ay, bx, by):
w = abs(ax + ay)
h = abs(bx + by)
(dax, day) = (sgn(ax), sgn(ay)) # unit major direction
(dbx, dby) = (sgn(bx), sgn(by)) # unit orthogonal direction
dx = dax + dbx
dy = day + dby
if h == 1:
if dax == 0:
return cur_idx + (dy * (y_dst - y))
return cur_idx + (dx * (x_dst - x))
if w == 1:
if dbx == 0:
return cur_idx + (dy * (y_dst - y))
return cur_idx + (dx * (x_dst - x))
(ax2, ay2) = (ax // 2, ay // 2)
(bx2, by2) = (bx // 2, by // 2)
w2 = abs(ax2 + ay2)
h2 = abs(bx2 + by2)
if 2 * w > 3 * h:
if (w2 % 2) and (w > 2):
# prefer even steps
(ax2, ay2) = (ax2 + dax, ay2 + day)
if in_bounds(x_dst, y_dst, x, y, ax2, ay2, bx, by):
return gilbert_xy2d_r(cur_idx, x_dst, y_dst, x, y, ax2, ay2, bx, by)
cur_idx += abs((ax2 + ay2) * (bx + by))
return gilbert_xy2d_r(
cur_idx, x_dst, y_dst, x + ax2, y + ay2, ax - ax2, ay - ay2, bx, by
)
else:
if (h2 % 2) and (h > 2):
# prefer even steps
(bx2, by2) = (bx2 + dbx, by2 + dby)
# standard case: one step up, one long horizontal, one step down
if in_bounds(x_dst, y_dst, x, y, bx2, by2, ax2, ay2):
return gilbert_xy2d_r(cur_idx, x_dst, y_dst, x, y, bx2, by2, ax2, ay2)
cur_idx += abs((bx2 + by2) * (ax2 + ay2))
if in_bounds(x_dst, y_dst, x + bx2, y + by2, ax, ay, bx - bx2, by - by2):
return gilbert_xy2d_r(
cur_idx, x_dst, y_dst, x + bx2, y + by2, ax, ay, bx - bx2, by - by2
)
cur_idx += abs((ax + ay) * ((bx - bx2) + (by - by2)))
return gilbert_xy2d_r(
cur_idx,
x_dst,
y_dst,
x + (ax - dax) + (bx2 - dbx),
y + (ay - day) + (by2 - dby),
-bx2,
-by2,
-(ax - ax2),
-(ay - ay2),
)
def gilbert_zigzag_path(N):
width = height = N
order_index = np.zeros((width, height), dtype=int)
for x in range(width):
for y in range(height):
idx = gilbert_xy2d(x, y, width, height)
order_index[x, y] = idx
return order_index
##################
def reverse_permut_np(permutation):
n = len(permutation)
reverse = np.array([0] * n)
for i in range(n):
reverse[permutation[i]] = i
return reverse
def zigzag_path(N):
def zigzag_path_lr(N, start_row=0, start_col=0, dir_row=1, dir_col=1):
path = []
for i in range(N):
for j in range(N):
# If the row number is even, move right; otherwise, move left
col = j if i % 2 == 0 else N - 1 - j
path.append((start_row + dir_row * i) * N + start_col + dir_col * col)
return path
def zigzag_path_tb(N, start_row=0, start_col=0, dir_row=1, dir_col=1):
path = []
for j in range(N):
for i in range(N):
# If the column number is even, move down; otherwise, move up
row = i if j % 2 == 0 else N - 1 - i
path.append((start_row + dir_row * row) * N + start_col + dir_col * j)
return path
paths = []
for start_row, start_col, dir_row, dir_col in [
(0, 0, 1, 1),
(0, N - 1, 1, -1),
(N - 1, 0, -1, 1),
(N - 1, N - 1, -1, -1),
]:
paths.append(zigzag_path_lr(N, start_row, start_col, dir_row, dir_col))
paths.append(zigzag_path_tb(N, start_row, start_col, dir_row, dir_col))
for _index, _p in enumerate(paths):
paths[_index] = np.array(_p)
return paths
def rand_perm(N, num):
res = []
for _ in range(num):
# Generate a list of numbers from 0 to NxN-1
numbers = list(range(N * N))
# Randomly shuffle the numbers
random.shuffle(numbers)
# print(numbers)
res.append(numbers)
return res
def traverse_grid_v1_continuous(N):
path = []
direction = "right" # initial direction
for i in range(N):
if direction == "right":
for j in range(N):
path.append(i * N + j)
if i != N - 1: # if not the last row
direction = "left"
elif direction == "left":
for j in range(N - 1, -1, -1):
path.append(i * N + j)
if i != N - 1: # if not the last row
direction = "right"
return [path, list(reversed(path))]
def test_hibert_fig(num_dims=2, img_size_power=3):
import numpy as np
import matplotlib.pyplot as plt
from hilbert import decode
def draw_curve(ax, num_bits):
# The maximum Hilbert integer.
max_h = 2 ** (num_bits * num_dims)
# Generate a sequence of Hilbert integers.
hilberts = np.arange(max_h)
print("image size:", 2**img_size_power)
order_index = np.zeros((2**img_size_power, 2**img_size_power), dtype=int)
# Compute the 2-dimensional locations.
locs = decode(hilberts, num_dims, num_bits)
for i, loc in enumerate(locs):
order_index[loc[0], loc[1]] = i
print(locs.shape, locs)
print(order_index)
# Draw
ax.plot(locs[:, 0], locs[:, 1], ".-")
ax.set_aspect("equal")
# ax.set_title("%d bits per dimension" % (num_bits))
# ax.set_xlabel("dim 1")
# ax.set_ylabel("dim 2")
fig = plt.figure(figsize=(16, 4))
for ii, num_bits in enumerate([img_size_power]):
ax = fig.add_subplot(1, 4, ii + 1)
draw_curve(ax, num_bits)
plt.savefig("example_2d.png", bbox_inches="tight")
def hilbert_path_square(num_dims=2, N=4):
import numpy as np
from hilbert import decode
img_size_power = int(math.sqrt(N))
assert img_size_power**2 == N, f"{N} should be a square number"
print("img_size_power", img_size_power)
def draw_curve(num_bits):
# The maximum Hilbert integer.
max_h = 2 ** (num_bits * num_dims)
# Generate a sequence of Hilbert integers.
hilberts = np.arange(max_h)
print("image size:", N)
order_index = np.zeros((N, N), dtype=int)
# Compute the 2-dimensional locations.
locs = decode(hilberts, num_dims, num_bits)
for i, loc in enumerate(locs):
order_index[loc[0], loc[1]] = i
# print(locs.shape, locs)
print(order_index)
return order_index
res = draw_curve(img_size_power)
res_mirror = np.transpose(res)
ro90 = np.rot90(res, 1)
ro90_mirror = np.transpose(ro90)
ro180 = np.rot90(res, 2)
ro180_mirror = np.transpose(ro180)
ro270 = np.rot90(res, 3)
ro270_mirror = np.transpose(ro270)
res = [res, res_mirror, ro90, ro90_mirror, ro180, ro180_mirror, ro270, ro270_mirror]
print("***")
for _ in res:
print(_)
res = [_.flatten() for _ in res]
for _ in res:
print(_.shape)
return res
def hilbert_path(N=16):
res = gilbert_zigzag_path(N)
res_mirror = np.transpose(res)
ro90 = np.rot90(res, 1)
ro90_mirror = np.transpose(ro90)
ro180 = np.rot90(res, 2)
ro180_mirror = np.transpose(ro180)
ro270 = np.rot90(res, 3)
ro270_mirror = np.transpose(ro270)
res = [res, res_mirror, ro90, ro90_mirror, ro180, ro180_mirror, ro270, ro270_mirror]
print("***")
for _ in res:
print(_)
res = [_.flatten() for _ in res]
for _ in res:
print(_.shape)
return res
def draw_pineao_curve():
import matplotlib.pyplot as plt
def peano_curve(level, x, y, dx, dy):
if level == 0:
plt.plot([x, x + dx], [y, y + dy], color="black")
else:
dx /= 3
dy /= 3
peano_curve(level - 1, x, y, dx, dy)
peano_curve(level - 1, x + dx, y + dy, dx, dy)
peano_curve(level - 1, x + 2 * dx, y + dy, dx, dy)
peano_curve(level - 1, x + dx, y + 2 * dy, dx, dy)
peano_curve(level - 1, x, y + 2 * dy, dx, dy)
plt.figure(figsize=(6, 6))
peano_curve(
3, 0, 0, 1, 1
) # Increase the first argument to increase the complexity of the curve
plt.gca().invert_yaxis() # Invert y axis to match the standard mathematical coordinate system
plt.axis("off") # Hide axes
plt.show()
plt.savefig("peano_curve.png", bbox_inches="tight")
if __name__ == "__main__":
N = 4
if False:
print(zigzag_path(N))
print(len(zigzag_path(N)))
elif True:
# hilbert_path(N=N)
# test_hibert_fig(num_dims=2, img_size_power=3)
draw_pineao_curve()