-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtest_inmemory.py
142 lines (108 loc) · 3.94 KB
/
test_inmemory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import pytest
from torch.utils.data import DataLoader
from continuum.tasks import split_train_val, TaskType
from continuum.datasets import InMemoryDataset
from continuum.scenarios import ClassIncremental
def gen_data():
x_train = np.random.randint(0, 255, size=(20, 32, 32, 3))
y_train = []
for i in range(10):
y_train.append(np.ones(2) * i)
y_train = np.concatenate(y_train)
x_test = np.random.randint(0, 255, size=(20, 32, 32, 3))
y_test = np.copy(y_train)
return (x_train, y_train), (x_test, y_test)
def gen_tensor_data():
x_train = np.random.rand(20, 100)
y_train = []
for i in range(10):
y_train.append(np.ones(2) * i)
y_train = np.concatenate(y_train)
x_test = np.random.rand(20, 100)
y_test = np.copy(y_train)
return (x_train, y_train), (x_test, y_test)
# this function create data with a mismatch between x and y shape
def gen_bad_data():
nb_classes = 6
nb_data_x = 10
nb_data_y = 100
x_train = []
y_train = []
for i in range(nb_classes):
x_train.append(np.random.randint(100, size=(nb_data_x, 2, 2, 3)).astype(dtype=np.uint8))
y_train.append(np.ones(nb_data_y) * i)
x_train = np.concatenate(x_train)
y_train = np.concatenate(y_train)
x_test = np.copy(x_train)
y_test = np.copy(y_train)
return (x_train, y_train.astype(int)), (x_test, y_test.astype(int))
# yapf: disable
@pytest.mark.parametrize("increment,initial_increment,nb_tasks", [
(2, 0, 5),
(5, 0, 2),
(1, 5, 6),
(2, 4, 4),
([5, 1, 1, 3], 0, 4)
])
def test_increments(increment, initial_increment, nb_tasks):
train, test = gen_data()
dummy = InMemoryDataset(*train)
scenario = ClassIncremental(dummy, increment=increment, initial_increment=initial_increment)
assert scenario.nb_tasks == nb_tasks
seen_tasks = 0
for task_id, taskset in enumerate(scenario):
seen_tasks += 1
if isinstance(increment, list):
max_class = sum(increment[:task_id + 1])
min_class = sum(increment[:task_id])
elif initial_increment:
max_class = initial_increment + increment * task_id
min_class = initial_increment + increment * (task_id - 1) if task_id > 0 else 0
else:
max_class = increment * (task_id + 1)
min_class = increment * task_id
for _ in DataLoader(taskset):
pass
assert np.max(taskset._y) == max_class - 1
assert np.min(taskset._y) == min_class
assert seen_tasks == nb_tasks
def test_bad_data():
train, test = gen_bad_data()
with pytest.raises(ValueError):
dummy = InMemoryDataset(*train)
@pytest.mark.parametrize("val_split", [0, 0.1, 0.5, 0.8, 1.0])
def test_split_train_val(val_split):
train, test = gen_data()
dummy = InMemoryDataset(*train)
scenario = ClassIncremental(dummy, increment=5)
for taskset in scenario:
train_taskset, val_taskset = split_train_val(taskset, val_split=val_split)
assert int(val_split * len(taskset)) == len(val_taskset)
assert len(val_taskset) + len(train_taskset) == len(taskset)
@pytest.mark.parametrize("increment,nb_tasks", [
(2, 5),
(5, 2),
(1, 10)
])
def test_tensor_type(increment, nb_tasks):
train, test = gen_tensor_data()
dummy = InMemoryDataset(*train, data_type=TaskType.TENSOR)
scenario = ClassIncremental(dummy, increment=increment)
taskset = scenario[0]
for x, y, t in DataLoader(taskset):
continue
assert scenario.nb_tasks == nb_tasks
@pytest.mark.parametrize("increment,nb_tasks", [
(2, 5),
(5, 2),
(1, 10)
])
def test_tensor_type_get_samples(increment, nb_tasks):
train, test = gen_tensor_data()
dummy = InMemoryDataset(*train, data_type=TaskType.TENSOR)
scenario = ClassIncremental(dummy, increment=increment)
taskset = scenario[0]
for x, y, t in DataLoader(taskset):
continue
x, y, t = taskset.get_random_samples(5)