-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtest_metrics.py
419 lines (340 loc) · 13.5 KB
/
test_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import os
import numpy as np
import pytest
from torch import nn
import torch
from copy import deepcopy
from continuum.metrics import Logger
from continuum.metrics import get_model_size
DATA_PATH = os.environ.get("CONTINUUM_DATA_PATH")
# yapf: disable
@pytest.fixture
def numpy_data():
nb_classes = 20
nb_tasks = 5
nb_data = 100
seen_classes = 0
inc_classes = nb_classes // nb_tasks
targets = []
tasks = []
for t in range(nb_tasks):
seen_classes += inc_classes
task_targets = np.concatenate([
np.ones(nb_data) * c
for c in range(seen_classes)
])
task_tasks = np.concatenate([
np.ones(nb_data * inc_classes) * tt
for tt in range(t + 1)
]) # We also see previous data
targets.append(task_targets)
tasks.append(task_tasks)
return targets, tasks
@pytest.fixture
def torch_models():
class Small(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Sequential(nn.Conv2d(2, 3, 1, bias=False), nn.Conv2d(2, 3, 1, bias=False))
self.fc = nn.Linear(5, 4)
self.scalar = nn.Parameter(torch.tensor(3.))
class Big(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Sequential(nn.Conv2d(2, 3, 1, bias=False), nn.Conv2d(2, 3, 1, bias=False))
self.fc = nn.Linear(5, 4)
self.fc2 = nn.Linear(5, 4)
self.scalar = nn.Parameter(torch.tensor(3.))
return Small(), Big()
@pytest.mark.parametrize("acc_1, acc_2, metric, expected_result", [
([1, 1], [0, 0.5], "accuracy", 0.75),
([1, 0.5], [0.75, 0.25], "accuracy_per_task", [1, 0.5]),
([1, 0.5], [0.5, 0], "average_incremental_accuracy", 0.5),
([1, 0.5], [0.5, 0], "backward_transfer", -0.5),
([1, 0.25], [0.125, 0.25], "forward_transfer", 0.125),
([1, 0.25], [0.5, 0.25], "positive_backward_transfer", 0),
([0.75, 1.0], [0.25, 0.25], "positive_backward_transfer", 0.25),
([1, 0.25], [0.25, 0.25], "remembering", 0.25),
([1, 0.25], [0.25, 0.25], "forgetting", 0.75),
([1, 0.25], [0.25, 0.25], "accuracy_A", 0.5),
])
def test_exact_test_results(acc_1, acc_2, metric, expected_result):
logger = Logger(list_subsets=['train', 'test'])
nb_tasks = len(acc_1)
nb_epochs = 3
nb_iteration = 4
batch_size = 32
for task_id in range(nb_tasks):
loc_acc_1 = acc_1[task_id]
loc_acc_2 = acc_2[task_id]
for epoch in range(nb_epochs):
for iteration in range(nb_iteration):
# we are on test here so we log all tasks
# task 1
preds = np.ones(32)
size_bad_pred = int(batch_size * (1-loc_acc_1))
preds[:size_bad_pred] = 0
targets = np.ones(32)
task_ids = np.zeros(32) # tas
logger.add(value=[preds, targets, task_ids], subset='test')
# task 2
preds = np.ones(32)
size_bad_pred = int(batch_size * (1-loc_acc_2))
preds[:size_bad_pred] = 0
targets = np.ones(32)
task_ids = np.ones(32)
logger.add(value=[preds, targets, task_ids], subset='test')
logger.end_epoch()
logger.end_task()
if metric == "accuracy":
assert logger.accuracy == expected_result
elif metric == "accuracy_per_task":
res = logger.accuracy_per_task
print(res)
assert res[0] == acc_1[-1]
assert res[1] == acc_2[-1]
elif metric == "average_incremental_accuracy":
assert logger.average_incremental_accuracy == expected_result
elif metric == "backward_transfer":
assert logger.backward_transfer == expected_result
elif metric == "forward_transfer":
assert logger.forward_transfer == expected_result
elif metric == "positive_backward_transfer":
assert logger.positive_backward_transfer == expected_result
elif metric == "remembering":
assert logger.remembering == expected_result
elif metric == "forgetting":
assert logger.forgetting == expected_result
elif metric == "accuracy_A":
assert logger.accuracy_A == expected_result
else:
raise NotImplementedError("metric not tested here")
def test_logger_nb_tasks(numpy_data):
logger = Logger()
all_targets, all_tasks = numpy_data
nb_tasks = 3
nb_epochs = 5
for task in range(nb_tasks):
for epoch in range(nb_epochs):
for targets, task_ids in zip(all_targets, all_tasks):
preds = np.copy(targets)
logger.add([preds, targets, task_ids], subset="train")
logger.end_epoch()
logger.end_task()
assert logger.nb_tasks == nb_tasks
def test_logger_simplest_add(numpy_data):
logger = Logger()
all_targets, all_tasks = numpy_data
nb_tasks = 3
nb_epochs = 5
for task in range(nb_tasks):
for epoch in range(nb_epochs):
for targets, task_ids in zip(all_targets, all_tasks):
preds = np.copy(targets)
logger.add([preds, targets, task_ids], subset="train")
logger.end_epoch()
logger.end_task()
def test_logger_add_tensor(numpy_data):
"""
test to check if we can use the logger to log random tensor with random keword
"""
logger = Logger(list_keywords=['RandKeyword'])
all_targets, all_tasks = numpy_data
nb_tasks = 3
nb_epochs = 5
for task in range(nb_tasks):
for epoch in range(nb_epochs):
for targets, task_ids in zip(all_targets, all_tasks):
rand_vector = torch.randn(15)
logger.add(rand_vector, keyword='RandKeyword')
logger.end_epoch()
logger.end_task()
def test_logger_add_tensor_after_end_epoch_end_task(numpy_data):
"""
test to check if we can use the logger to log random tensor with random keword
"""
logger = Logger(list_subsets=['train', 'test'])
all_targets, all_tasks = numpy_data
nb_tasks = 3
nb_epochs = 5
for task in range(nb_tasks):
for epoch in range(nb_epochs):
for targets, task_ids in zip(all_targets, all_tasks):
preds_te = np.random.randint(0, 10 + 1, 64)
targets_te = np.random.randint(0, 10 + 1, 64)
logger.add(value=[preds_te, targets_te, task_ids], subset='test')
logger.end_epoch()
assert 0. <= logger.accuracy <= 1.
logger.end_task()
def test_logger_add_tensor_minibatch(numpy_data):
"""
test to check if we can use the logger to log random tensor with random keword
"""
logger = Logger(list_subsets=['train', 'test'])
nb_tasks = 3
nb_epochs = 5
nb_iteration = 6
for task in range(nb_tasks):
for epoch in range(nb_epochs):
for iteration in range(nb_iteration):
preds = np.random.randint(0, 10 + 1, 64)
targets = np.random.randint(0, 10 + 1, 64)
task_ids = np.ones(64) * task
logger.add(value=[preds, targets, task_ids], subset='train')
preds_te = np.random.randint(0, 10 + 1, 64)
targets_te = np.random.randint(0, 10 + 1, 64)
logger.add(value=[preds_te, targets_te, task_ids], subset='test')
assert 0. <= logger.accuracy <= 1.
assert 0. <= logger.average_incremental_accuracy <= 1.
logger.end_epoch()
logger.end_task()
@pytest.mark.parametrize("mode,expected", [
("best", 1.), ("worst", 0.), ("random", None)
])
def test_metrics(numpy_data, mode, expected):
logger = Logger()
all_targets, all_tasks = numpy_data
for targets, task_ids in zip(all_targets, all_tasks):
if mode == "best":
preds = np.copy(targets)
elif mode == "worst":
# Trick to never generate the correct predictions
# only work for more three classes or more
preds = (np.copy(targets) + 1) % np.max(targets)
else:
preds = np.random.randint(0, np.max(targets) + 1, targets.shape)
logger.add(value=[preds, targets, task_ids], subset="train")
logger.add(value=[preds, targets, task_ids], subset="test")
accuracies = [
logger.accuracy, logger.online_cumulative_performance,
logger.accuracy_A,
]
for acc in accuracies:
if expected is not None:
assert acc == expected, (acc, mode)
assert 0. <= acc <= 1.
assert -1. <= logger.backward_transfer <= 1.0
assert -1. <= logger.forward_transfer <= 1.0
assert 0. <= logger.positive_backward_transfer <= 1.0
assert 0. <= logger.remembering <= 1.0
assert 0. <= logger.forgetting <= 1.0
assert 0. <= logger.average_incremental_accuracy <= 1.
@pytest.mark.parametrize("mode,expected", [
("best", 1.), ("worst", 0.), ("random", None)
])
def test_accuracy_per_task(numpy_data, mode, expected):
logger = Logger()
all_targets, all_tasks = numpy_data
for targets, task_ids in zip(all_targets, all_tasks):
if mode == "best":
preds = np.copy(targets)
elif mode == "worst":
# Trick to never generate the correct predictions
# only work for more three classes or more
preds = (np.copy(targets) + 1) % np.max(targets)
else:
preds = np.random.randint(0, np.max(targets) + 1, targets.shape)
logger.add(value=[preds, targets, task_ids], subset="test")
accuracies = logger.accuracy_per_task
for accuracy in accuracies:
assert 0. <= accuracy <= 1.0
@pytest.mark.parametrize("batch_size", [
1, 32, None
])
def test_online_accuracy(numpy_data, batch_size):
logger = Logger()
all_targets, _ = numpy_data
targets = all_targets[0]
# we check that when no data is in the logger online_accuracy generate an error
check_raised(lambda: logger.online_accuracy)
batch_size = batch_size or len(targets)
for batch_index in range(0, len(targets), batch_size):
y = targets[batch_index: batch_index + batch_size]
x = np.copy(y)
logger.add(value=[x, y, None], subset="train")
logger.online_accuracy
logger.online_accuracy
logger.add(value=[targets, np.copy(targets), None], subset="train")
logger.online_accuracy
def test_require_subset_test(numpy_data):
logger = Logger()
check_raised(lambda: logger.accuracy)
values = [numpy_data[0][0], numpy_data[0][0], numpy_data[0][1]]
logger.add(values, subset="test")
logger.accuracy
def test_require_subset_train(numpy_data):
logger = Logger()
check_raised(lambda: logger.online_cumulative_performance)
values = [numpy_data[0][0], numpy_data[0][0], numpy_data[0][1]]
logger.add(values, subset="train")
logger.online_cumulative_performance
def test_model_size(torch_models):
small, big = torch_models
assert get_model_size(small) < get_model_size(big)
def test_model_growth(torch_models):
small, big = torch_models
logger1 = Logger(list_keywords=['model_size']) # Logger declaration with parameter name
logger1.add(get_model_size(small), keyword='model_size')
logger1.end_task()
logger1.add(get_model_size(small), keyword='model_size')
logger1.end_task()
ms1 = logger1.model_size_growth
logger2 = Logger(['model_size']) # Logger declaration without parameter name
logger2.add(get_model_size(small), keyword='model_size')
logger2.end_task()
logger2.add(get_model_size(big), keyword='model_size')
logger2.end_task()
ms2 = logger2.model_size_growth
logger3 = Logger(['model_size'])
logger3.add(get_model_size(big), keyword='model_size')
logger3.end_task()
logger3.add(get_model_size(small), keyword='model_size')
logger3.end_task()
ms3 = logger3.model_size_growth
logger4 = Logger(['model_size'])
logger4.add(get_model_size(big), keyword='model_size')
logger4.end_task()
logger4.add(get_model_size(big), keyword='model_size')
logger4.end_task()
ms4 = logger4.model_size_growth
assert ms1 == ms4 == ms3 == 1.0
assert 0. <= ms2 < 1.
@pytest.mark.slow
def test_example_doc():
from torch.utils.data import DataLoader
import numpy as np
from continuum import ClassIncremental
from continuum.datasets import MNIST
from continuum.metrics import Logger
train_scenario = ClassIncremental(
MNIST(data_path=DATA_PATH, download=True, train=True),
increment=2
)
test_scenario = ClassIncremental(
MNIST(data_path=DATA_PATH, download=True, train=False),
increment=2
)
# model = ...
test_loader = DataLoader(test_scenario[:])
logger = Logger(list_subsets=['train', 'test'])
for task_id, train_taskset in enumerate(train_scenario):
train_loader = DataLoader(train_taskset)
for x, y, t in train_loader:
predictions = y # model(x)
logger.add([predictions, y, None], subset="train")
_ = (f"Online accuracy: {logger.online_accuracy}")
for x_test, y_test, t_test in test_loader:
preds_test = y_test
logger.add([preds_test, y_test, t_test], subset="test")
_ = (f"Task: {task_id}, acc: {logger.accuracy}, avg acc: {logger.average_incremental_accuracy}")
if task_id > 0:
_ = (f"BWT: {logger.backward_transfer}, FWT: {logger.forward_transfer}")
logger.end_task()
def check_raised(func):
has_raised = False
try:
func()
except:
has_raised = True
finally:
assert has_raised