-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhmm_classifier.py
103 lines (86 loc) · 3.15 KB
/
hmm_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# https://deeplearningcourses.com/c/unsupervised-machine-learning-hidden-markov-models-in-python
# https://udemy.com/unsupervised-machine-learning-hidden-markov-models-in-python
# http://lazyprogrammer.me
# Demonstrate how HMMs can be used for classification.
from __future__ import print_function, division
from future.utils import iteritems
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import string
import numpy as np
import matplotlib.pyplot as plt
from hmmd_theano2 import HMM
from sklearn.utils import shuffle
from nltk import pos_tag, word_tokenize
class HMMClassifier:
def __init__(self):
pass
def fit(self, X, Y, V):
K = len(set(Y)) # number of classes - assume 0..K-1
N = len(Y)
self.models = []
self.priors = []
for k in range(K):
# gather all the training data for this class
thisX = [x for x, y in zip(X, Y) if y == k]
C = len(thisX)
self.priors.append(np.log(C) - np.log(N))
hmm = HMM(5)
hmm.fit(thisX, V=V, print_period=1, learning_rate=1e-2, max_iter=80)
self.models.append(hmm)
def score(self, X, Y):
N = len(Y)
correct = 0
for x, y in zip(X, Y):
lls = [hmm.log_likelihood(x) + prior for hmm, prior in zip(self.models, self.priors)]
p = np.argmax(lls)
if p == y:
correct += 1
return float(correct) / N
# def remove_punctuation(s):
# return s.translate(None, string.punctuation)
def get_tags(s):
tuples = pos_tag(word_tokenize(s))
return [y for x, y in tuples]
def get_data():
word2idx = {}
current_idx = 0
X = []
Y = []
for fn, label in zip(('robert_frost.txt', 'edgar_allan_poe.txt'), (0, 1)):
count = 0
for line in open(fn):
line = line.rstrip()
if line:
print(line)
# tokens = remove_punctuation(line.lower()).split()
tokens = get_tags(line)
if len(tokens) > 1:
# scan doesn't work nice here, technically could fix...
for token in tokens:
if token not in word2idx:
word2idx[token] = current_idx
current_idx += 1
sequence = np.array([word2idx[w] for w in tokens])
X.append(sequence)
Y.append(label)
count += 1
print(count)
if count >= 50:
break
print("Vocabulary:", word2idx.keys())
return X, Y, current_idx
def main():
X, Y, V = get_data()
print("len(X):", len(X))
print("Vocabulary size:", V)
X, Y = shuffle(X, Y)
N = 20 # number to test
Xtrain, Ytrain = X[:-N], Y[:-N]
Xtest, Ytest = X[-N:], Y[-N:]
model = HMMClassifier()
model.fit(Xtrain, Ytrain, V)
print("Score:", model.score(Xtest, Ytest))
if __name__ == '__main__':
main()