-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpos_tf.py
252 lines (200 loc) · 6.86 KB
/
pos_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Course URL:
# https://deeplearningcourses.com/c/natural-language-processing-with-deep-learning-in-python
# https://udemy.com/natural-language-processing-with-deep-learning-in-python
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import os
import sys
sys.path.append(os.path.abspath('..'))
from pos_baseline import get_data
from sklearn.utils import shuffle
from util import init_weight
from datetime import datetime
from sklearn.metrics import f1_score
from tensorflow.contrib.rnn import static_rnn as get_rnn_output
from tensorflow.contrib.rnn import BasicRNNCell, GRUCell
def get_data(split_sequences=False):
if not os.path.exists('chunking'):
print("Please create a folder in your local directory called 'chunking'")
print("train.txt and test.txt should be stored in there.")
print("Please check the comments to get the download link.")
exit()
elif not os.path.exists('chunking/train.txt'):
print("train.txt is not in chunking/train.txt")
print("Please check the comments to get the download link.")
exit()
elif not os.path.exists('chunking/test.txt'):
print("test.txt is not in chunking/test.txt")
print("Please check the comments to get the download link.")
exit()
word2idx = {}
tag2idx = {}
word_idx = 1
tag_idx = 1
Xtrain = []
Ytrain = []
currentX = []
currentY = []
for line in open('chunking/train.txt'):
line = line.rstrip()
if line:
r = line.split()
word, tag, _ = r
if word not in word2idx:
word2idx[word] = word_idx
word_idx += 1
currentX.append(word2idx[word])
if tag not in tag2idx:
tag2idx[tag] = tag_idx
tag_idx += 1
currentY.append(tag2idx[tag])
elif split_sequences:
Xtrain.append(currentX)
Ytrain.append(currentY)
currentX = []
currentY = []
if not split_sequences:
Xtrain = currentX
Ytrain = currentY
# load and score test data
Xtest = []
Ytest = []
currentX = []
currentY = []
for line in open('chunking/test.txt'):
line = line.rstrip()
if line:
r = line.split()
word, tag, _ = r
if word in word2idx:
currentX.append(word2idx[word])
else:
currentX.append(word_idx) # use this as unknown
currentY.append(tag2idx[tag])
elif split_sequences:
Xtest.append(currentX)
Ytest.append(currentY)
currentX = []
currentY = []
if not split_sequences:
Xtest = currentX
Ytest = currentY
return Xtrain, Ytrain, Xtest, Ytest, word2idx
def flatten(l):
return [item for sublist in l for item in sublist]
# get the data
Xtrain, Ytrain, Xtest, Ytest, word2idx = get_data(split_sequences=True)
V = len(word2idx) + 2 # vocab size (+1 for unknown, +1 b/c start from 1)
K = len(set(flatten(Ytrain)) | set(flatten(Ytest))) + 1 # num classes
# training config
epochs = 20
learning_rate = 1e-2
mu = 0.99
batch_size = 32
hidden_layer_size = 10
embedding_dim = 10
sequence_length = max(len(x) for x in Xtrain + Xtest)
# pad sequences
Xtrain = tf.keras.preprocessing.sequence.pad_sequences(Xtrain, maxlen=sequence_length)
Ytrain = tf.keras.preprocessing.sequence.pad_sequences(Ytrain, maxlen=sequence_length)
Xtest = tf.keras.preprocessing.sequence.pad_sequences(Xtest, maxlen=sequence_length)
Ytest = tf.keras.preprocessing.sequence.pad_sequences(Ytest, maxlen=sequence_length)
print("Xtrain.shape:", Xtrain.shape)
print("Ytrain.shape:", Ytrain.shape)
# inputs
inputs = tf.placeholder(tf.int32, shape=(None, sequence_length))
targets = tf.placeholder(tf.int32, shape=(None, sequence_length))
num_samples = tf.shape(inputs)[0] # useful for later
# embedding
We = np.random.randn(V, embedding_dim).astype(np.float32)
# output layer
Wo = init_weight(hidden_layer_size, K).astype(np.float32)
bo = np.zeros(K).astype(np.float32)
# make them tensorflow variables
tfWe = tf.Variable(We)
tfWo = tf.Variable(Wo)
tfbo = tf.Variable(bo)
# make the rnn unit
rnn_unit = GRUCell(num_units=hidden_layer_size, activation=tf.nn.relu)
# get the output
x = tf.nn.embedding_lookup(tfWe, inputs)
# converts x from a tensor of shape N x T x M
# into a list of length T, where each element is a tensor of shape N x M
x = tf.unstack(x, sequence_length, 1)
# get the rnn output
outputs, states = get_rnn_output(rnn_unit, x, dtype=tf.float32)
# outputs are now of size (T, N, M)
# so make it (N, T, M)
outputs = tf.transpose(outputs, (1, 0, 2))
outputs = tf.reshape(outputs, (sequence_length*num_samples, hidden_layer_size)) # NT x M
# final dense layer
logits = tf.matmul(outputs, tfWo) + tfbo # NT x K
predictions = tf.argmax(logits, 1)
predict_op = tf.reshape(predictions, (num_samples, sequence_length))
labels_flat = tf.reshape(targets, [-1])
cost_op = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits,
labels=labels_flat
)
)
train_op = tf.train.AdamOptimizer(learning_rate).minimize(cost_op)
# init stuff
sess = tf.InteractiveSession()
init = tf.global_variables_initializer()
sess.run(init)
# training loop
costs = []
n_batches = len(Ytrain) // batch_size
for i in range(epochs):
n_total = 0
n_correct = 0
t0 = datetime.now()
Xtrain, Ytrain = shuffle(Xtrain, Ytrain)
cost = 0
for j in range(n_batches):
x = Xtrain[j*batch_size:(j+1)*batch_size]
y = Ytrain[j*batch_size:(j+1)*batch_size]
# get the cost, predictions, and perform a gradient descent step
c, p, _ = sess.run(
(cost_op, predict_op, train_op),
feed_dict={inputs: x, targets: y})
cost += c
# calculate the accuracy
for yi, pi in zip(y, p):
# we don't care about the padded entries so ignore them
yii = yi[yi > 0]
pii = pi[yi > 0]
n_correct += np.sum(yii == pii)
n_total += len(yii)
# print stuff out periodically
if j % 10 == 0:
sys.stdout.write(
"j/N: %d/%d correct rate so far: %f, cost so far: %f\r" %
(j, n_batches, float(n_correct)/n_total, cost)
)
sys.stdout.flush()
# get test acc. too
p = sess.run(predict_op, feed_dict={inputs: Xtest, targets: Ytest})
n_test_correct = 0
n_test_total = 0
for yi, pi in zip(Ytest, p):
yii = yi[yi > 0]
pii = pi[yi > 0]
n_test_correct += np.sum(yii == pii)
n_test_total += len(yii)
test_acc = float(n_test_correct) / n_test_total
print(
"i:", i, "cost:", "%.4f" % cost,
"train acc:", "%.4f" % (float(n_correct)/n_total),
"test acc:", "%.4f" % test_acc,
"time for epoch:", (datetime.now() - t0)
)
costs.append(cost)
plt.plot(costs)
plt.show()