-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrf_regression.py
140 lines (120 loc) · 4.24 KB
/
rf_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# https://deeplearningcourses.com/c/machine-learning-in-python-random-forest-adaboost
# https://www.udemy.com/machine-learning-in-python-random-forest-adaboost
# uses house dataset from https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
# put all files in the folder ../large_files
from __future__ import print_function, division
from future.utils import iteritems
from builtins import range, input
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import cross_val_score
NUMERICAL_COLS = [
'crim', # numerical
'zn', # numerical
'nonretail', # numerical
'nox', # numerical
'rooms', # numerical
'age', # numerical
'dis', # numerical
'rad', # numerical
'tax', # numerical
'ptratio', # numerical
'b', # numerical
'lstat', # numerical
]
NO_TRANSFORM = ['river']
# transforms data from dataframe to numerical matrix
# we want to use the scales found in training when transforming the test set
# so only call fit() once
# call transform() for any subsequent data
class DataTransformer:
def fit(self, df):
self.scalers = {}
for col in NUMERICAL_COLS:
scaler = StandardScaler()
scaler.fit(df[col].values.reshape(-1, 1))
self.scalers[col] = scaler
def transform(self, df):
N, _ = df.shape
D = len(NUMERICAL_COLS) + len(NO_TRANSFORM)
X = np.zeros((N, D))
i = 0
for col, scaler in iteritems(self.scalers):
X[:,i] = scaler.transform(df[col].values.reshape(-1, 1)).flatten()
i += 1
for col in NO_TRANSFORM:
X[:,i] = df[col]
i += 1
return X
def fit_transform(self, df):
self.fit(df)
return self.transform(df)
def get_data():
df = pd.read_csv('housing.data', header=None, delim_whitespace=True)
df.columns = [
'crim', # numerical
'zn', # numerical
'nonretail', # numerical
'river', # binary
'nox', # numerical
'rooms', # numerical
'age', # numerical
'dis', # numerical
'rad', # numerical
'tax', # numerical
'ptratio', # numerical
'b', # numerical
'lstat', # numerical
'medv', # numerical -- this is the target
]
# transform the data
transformer = DataTransformer()
# shuffle the data
N = len(df)
train_idx = np.random.choice(N, size=int(0.7*N), replace=False)
test_idx = [i for i in range(N) if i not in train_idx]
df_train = df.loc[train_idx]
df_test = df.loc[test_idx]
Xtrain = transformer.fit_transform(df_train)
Ytrain = np.log(df_train['medv'].values)
Xtest = transformer.transform(df_test)
Ytest = np.log(df_test['medv'].values)
return Xtrain, Ytrain, Xtest, Ytest
if __name__ == '__main__':
Xtrain, Ytrain, Xtest, Ytest = get_data()
model = RandomForestRegressor(n_estimators=100) # try 10, 20, 50, 100, 200
model.fit(Xtrain, Ytrain)
predictions = model.predict(Xtest)
# plot predictions vs targets
plt.scatter(Ytest, predictions)
plt.xlabel("target")
plt.ylabel("prediction")
ymin = np.round( min( min(Ytest), min(predictions) ) )
ymax = np.ceil( max( max(Ytest), max(predictions) ) )
print("ymin:", ymin, "ymax:", ymax)
r = range(int(ymin), int(ymax) + 1)
plt.plot(r, r)
plt.show()
plt.plot(Ytest, label='targets')
plt.plot(predictions, label='predictions')
plt.legend()
plt.show()
# do a quick baseline test
baseline = LinearRegression()
single_tree = DecisionTreeRegressor()
print("CV single tree:", cross_val_score(single_tree, Xtrain, Ytrain, cv=5).mean())
print("CV baseline:", cross_val_score(baseline, Xtrain, Ytrain, cv=5).mean())
print("CV forest:", cross_val_score(model, Xtrain, Ytrain, cv=5).mean())
# test score
single_tree.fit(Xtrain, Ytrain)
baseline.fit(Xtrain, Ytrain)
print("test score single tree:", single_tree.score(Xtest, Ytest))
print("test score baseline:", baseline.score(Xtest, Ytest))
print("test score forest:", model.score(Xtest, Ytest))