forked from Xxhhj1/doc-generate-1
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadd_clustering_sample_code.py
106 lines (89 loc) · 3.87 KB
/
add_clustering_sample_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from project.utils.path_util import PathUtil
from pathlib import Path
from sekg.graph.exporter.graph_data import GraphData, NodeInfo
from sekg.ir.doc.wrapper import MultiFieldDocument, MultiFieldDocumentCollection
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.cluster import KMeans
import definitions
import json
'''
将样例代码进行聚类划分并输出
'''
pro_name = "jabref"
graph_data_path = PathUtil.graph_data(pro_name=pro_name, version="v3.9")
doc_collection_path = PathUtil.doc(pro_name=pro_name, version="v3.2")
doc_collection_save_path = PathUtil.doc(pro_name=pro_name, version="v3.3")
api_to_example_json_path = Path(definitions.ROOT_DIR) / "output" / "json" / "api_2_example_sorted.json"
mid_to_method_info_json_path = Path(definitions.ROOT_DIR) / "output" / "json" / "mid_2_method_info_without_comment.json"
graph_data: GraphData = GraphData.load(graph_data_path)
doc_collection: MultiFieldDocumentCollection = MultiFieldDocumentCollection.load(doc_collection_path)
# 读取sample code文件. api_to_mid: 每个api对应的sample code的mid. methods_info: 每个mid对应的代码
with open(api_to_example_json_path, 'r') as f:
api_to_mid = json.load(f)
f.close()
methods_info = list()
methods = open(mid_to_method_info_json_path, 'r').readlines()
for method in methods:
methods_info.append(json.loads(method)['method'])
# 根据qualified name查找得到doc文件
def find_doc(qualified_name):
node: NodeInfo = graph_data.find_one_node_by_property(property_name='qualified_name', property_value=qualified_name)
if node is None:
node: NodeInfo = graph_data.find_one_node_by_property_value_starts_with(property_name='qualified_name',
property_value_starter=qualified_name)
api_id = node['id']
doc: MultiFieldDocument = doc_collection.get_by_id(api_id)
return doc
# 返回api对应的语料
def get_corpus(qualified_name):
simple_name: str = qualified_name[qualified_name.rfind(".")+1:]
print(simple_name)
corpus = list()
nums = api_to_mid[qualified_name]
for num in nums:
method: str = methods_info[num-1]
if method.count("\n") >= 10 and method[:method.find("(")].find(simple_name) == -1:
corpus.append(method)
if len(nums) <= 5 or len(corpus) <= 5:
return None
return corpus
# 将语料转化为词向量
def corpus_to_vector(corpus):
# 转化为词频矩阵
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
word = vectorizer.get_feature_names()
# 转化为TF-IDF矩阵
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X)
return tfidf
# 返回相应cluster的样例代码
def find_one_cluster_example(corpus, result, index):
for i in range(len(result)):
if result[i] == index:
return corpus[i]
return ""
# k-means得到5个cluster
def get_cluster_result(X, corpus):
km = KMeans(5, init="k-means++", max_iter=300, n_init=1, verbose=False)
km.fit(X)
result = list(km.predict(X))
sample_code = list()
for i in range(5):
sample_code.append(find_one_cluster_example(corpus, result, i))
return sample_code
if __name__ == '__main__':
for qualified_name in iter(api_to_mid):
print("process {}".format(qualified_name))
doc = find_doc(qualified_name)
corpus = get_corpus(qualified_name)
if corpus is not None:
vector = corpus_to_vector(corpus)
result = get_cluster_result(vector, corpus)
print("clustering...")
doc.add_field(field_name="sample_code_cluster", field_document=result)
else:
print("None...")
doc.add_field(field_name="sample_code_cluster", field_document=None)
doc_collection.save(doc_collection_save_path)