forked from qubvel-org/segmentation_models.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegformer-original-decoder-to-smp.py
148 lines (117 loc) · 4.84 KB
/
segformer-original-decoder-to-smp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import argparse
import requests
import numpy as np
import huggingface_hub
import albumentations as A
import matplotlib.pyplot as plt
from PIL import Image
import segmentation_models_pytorch as smp
def convert_state_dict_to_smp(state_dict: dict):
# fmt: off
if "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
new_state_dict = {}
# Map the backbone components to the encoder
keys = list(state_dict.keys())
for key in keys:
if key.startswith("backbone"):
new_key = key.replace("backbone", "encoder")
new_state_dict[new_key] = state_dict.pop(key)
# Map the linear_cX layers to MLP stages
for i in range(4):
base = f"decode_head.linear_c{i+1}.proj"
new_state_dict[f"decoder.mlp_stage.{3-i}.linear.weight"] = state_dict.pop(f"{base}.weight")
new_state_dict[f"decoder.mlp_stage.{3-i}.linear.bias"] = state_dict.pop(f"{base}.bias")
# Map fuse_stage components
fuse_base = "decode_head.linear_fuse"
fuse_weights = {
"decoder.fuse_stage.0.weight": state_dict.pop(f"{fuse_base}.conv.weight"),
"decoder.fuse_stage.1.weight": state_dict.pop(f"{fuse_base}.bn.weight"),
"decoder.fuse_stage.1.bias": state_dict.pop(f"{fuse_base}.bn.bias"),
"decoder.fuse_stage.1.running_mean": state_dict.pop(f"{fuse_base}.bn.running_mean"),
"decoder.fuse_stage.1.running_var": state_dict.pop(f"{fuse_base}.bn.running_var"),
"decoder.fuse_stage.1.num_batches_tracked": state_dict.pop(f"{fuse_base}.bn.num_batches_tracked"),
}
new_state_dict.update(fuse_weights)
# Map final layer components
new_state_dict["segmentation_head.0.weight"] = state_dict.pop("decode_head.linear_pred.weight")
new_state_dict["segmentation_head.0.bias"] = state_dict.pop("decode_head.linear_pred.bias")
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
assert len(state_dict) == 0, f"Unmapped keys: {state_dict.keys()}"
# fmt: on
return new_state_dict
def get_np_image():
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return np.array(image)
def main(args):
original_checkpoint = torch.load(args.path, map_location="cpu", weights_only=True)
smp_state_dict = convert_state_dict_to_smp(original_checkpoint)
config = original_checkpoint["meta"]["config"]
num_classes = int(config.split("num_classes=")[1].split(",\n")[0])
decoder_dims = int(config.split("embed_dim=")[1].split(",\n")[0])
height, width = [
int(x) for x in config.split("crop_size=(")[1].split("), ")[0].split(",")
]
model_size = args.path.split("segformer.")[1][:2]
# Create the model
model = smp.create_model(
in_channels=3,
classes=num_classes,
arch="segformer",
encoder_name=f"mit_{model_size}",
encoder_weights=None,
decoder_segmentation_channels=decoder_dims,
).eval()
# Load the converted state dict
model.load_state_dict(smp_state_dict, strict=True)
# Preprocessing params
preprocessing = A.Compose(
[
A.Resize(height, width, p=1),
A.Normalize(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
max_pixel_value=1.0,
p=1,
),
]
)
# Prepare the input
image = get_np_image()
normalized_image = preprocessing(image=image)["image"]
tensor = torch.tensor(normalized_image).permute(2, 0, 1).unsqueeze(0).float()
# Forward pass
with torch.no_grad():
mask = model(tensor)
# Postprocessing
mask = torch.nn.functional.interpolate(
mask, size=(image.shape[0], image.shape[1]), mode="bilinear"
)
mask = torch.argmax(mask, dim=1)
mask = mask.squeeze().cpu().numpy()
model_name = args.path.split("/")[-1].replace(".pth", "").replace(".", "-")
model.save_pretrained(model_name)
preprocessing.save_pretrained(model_name)
# fmt: off
plt.subplot(121), plt.axis('off'), plt.imshow(image), plt.title('Input Image')
plt.subplot(122), plt.axis('off'), plt.imshow(mask), plt.title('Output Mask')
plt.savefig(f"{model_name}/example_mask.png")
# fmt: on
if args.push_to_hub:
repo_id = f"smp-hub/{model_name}"
api = huggingface_hub.HfApi()
api.create_repo(repo_id=repo_id, repo_type="model")
api.upload_folder(folder_path=model_name, repo_id=repo_id)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--path",
type=str,
default="weights/trained_models/segformer.b2.512x512.ade.160k.pth",
)
parser.add_argument("--push_to_hub", action="store_true")
args = parser.parse_args()
main(args)