-
Notifications
You must be signed in to change notification settings - Fork 217
/
Copy pathtrain.py
210 lines (177 loc) · 6.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# Modified by Ke Sun (sunk@mail.ustc.edu.cn)
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import pprint
import shutil
import sys
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
import _init_paths
import models
from config import config
from config import update_config
from core.function import train
from core.function import validate
from utils.modelsummary import get_model_summary
from utils.utils import get_optimizer
from utils.utils import save_checkpoint
from utils.utils import create_logger
def parse_args():
parser = argparse.ArgumentParser(description='Train classification network')
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('--modelDir',
help='model directory',
type=str,
default='')
parser.add_argument('--logDir',
help='log directory',
type=str,
default='')
parser.add_argument('--dataDir',
help='data directory',
type=str,
default='')
parser.add_argument('--testModel',
help='testModel',
type=str,
default='')
args = parser.parse_args()
update_config(config, args)
return args
def main():
args = parse_args()
logger, final_output_dir, tb_log_dir = create_logger(
config, args.cfg, 'train')
logger.info(pprint.pformat(args))
logger.info(pprint.pformat(config))
# cudnn related setting
cudnn.benchmark = config.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = config.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = config.CUDNN.ENABLED
model = eval('models.'+config.MODEL.NAME+'.get_cls_net')(
config)
dump_input = torch.rand(
(1, 3, config.MODEL.IMAGE_SIZE[1], config.MODEL.IMAGE_SIZE[0])
)
logger.info(get_model_summary(model, dump_input))
# copy model file
this_dir = os.path.dirname(__file__)
models_dst_dir = os.path.join(final_output_dir, 'models')
if os.path.exists(models_dst_dir):
shutil.rmtree(models_dst_dir)
shutil.copytree(os.path.join(this_dir, '../lib/models'), models_dst_dir)
writer_dict = {
'writer': SummaryWriter(log_dir=tb_log_dir),
'train_global_steps': 0,
'valid_global_steps': 0,
}
gpus = list(config.GPUS)
model = torch.nn.DataParallel(model, device_ids=gpus).cuda()
# define loss function (criterion) and optimizer
criterion = torch.nn.CrossEntropyLoss().cuda()
optimizer = get_optimizer(config, model)
best_perf = 0.0
best_model = False
last_epoch = config.TRAIN.BEGIN_EPOCH
if config.TRAIN.RESUME:
model_state_file = os.path.join(final_output_dir,
'checkpoint.pth.tar')
if os.path.isfile(model_state_file):
checkpoint = torch.load(model_state_file)
last_epoch = checkpoint['epoch']
best_perf = checkpoint['perf']
model.module.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> loaded checkpoint (epoch {})"
.format(checkpoint['epoch']))
best_model = True
if isinstance(config.TRAIN.LR_STEP, list):
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR,
last_epoch-1
)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR,
last_epoch-1
)
# Data loading code
traindir = os.path.join(config.DATASET.ROOT, config.DATASET.TRAIN_SET)
valdir = os.path.join(config.DATASET.ROOT, config.DATASET.TEST_SET)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(config.MODEL.IMAGE_SIZE[0]),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config.TRAIN.BATCH_SIZE_PER_GPU*len(gpus),
shuffle=True,
num_workers=config.WORKERS,
pin_memory=True
)
valid_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(int(config.MODEL.IMAGE_SIZE[0] / 0.875)),
transforms.CenterCrop(config.MODEL.IMAGE_SIZE[0]),
transforms.ToTensor(),
normalize,
])),
batch_size=config.TEST.BATCH_SIZE_PER_GPU*len(gpus),
shuffle=False,
num_workers=config.WORKERS,
pin_memory=True
)
for epoch in range(last_epoch, config.TRAIN.END_EPOCH):
lr_scheduler.step()
# train for one epoch
train(config, train_loader, model, criterion, optimizer, epoch,
final_output_dir, tb_log_dir, writer_dict)
# evaluate on validation set
perf_indicator = validate(config, valid_loader, model, criterion,
final_output_dir, tb_log_dir, writer_dict)
if perf_indicator > best_perf:
best_perf = perf_indicator
best_model = True
else:
best_model = False
logger.info('=> saving checkpoint to {}'.format(final_output_dir))
save_checkpoint({
'epoch': epoch + 1,
'model': config.MODEL.NAME,
'state_dict': model.module.state_dict(),
'perf': perf_indicator,
'optimizer': optimizer.state_dict(),
}, best_model, final_output_dir, filename='checkpoint.pth.tar')
final_model_state_file = os.path.join(final_output_dir,
'final_state.pth.tar')
logger.info('saving final model state to {}'.format(
final_model_state_file))
torch.save(model.module.state_dict(), final_model_state_file)
writer_dict['writer'].close()
if __name__ == '__main__':
main()