-
Notifications
You must be signed in to change notification settings - Fork 217
/
Copy pathvalid.py
128 lines (104 loc) · 3.99 KB
/
valid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# Modified by Ke Sun (sunk@mail.ustc.edu.cn)
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import shutil
import pprint
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import _init_paths
import models
from config import config
from config import update_config
from core.function import validate
from utils.modelsummary import get_model_summary
from utils.utils import create_logger
def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('--modelDir',
help='model directory',
type=str,
default='')
parser.add_argument('--logDir',
help='log directory',
type=str,
default='')
parser.add_argument('--dataDir',
help='data directory',
type=str,
default='')
parser.add_argument('--testModel',
help='testModel',
type=str,
default='')
args = parser.parse_args()
update_config(config, args)
return args
def main():
args = parse_args()
logger, final_output_dir, tb_log_dir = create_logger(
config, args.cfg, 'valid')
logger.info(pprint.pformat(args))
logger.info(pprint.pformat(config))
# cudnn related setting
cudnn.benchmark = config.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = config.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = config.CUDNN.ENABLED
model = eval('models.'+config.MODEL.NAME+'.get_cls_net')(
config)
dump_input = torch.rand(
(1, 3, config.MODEL.IMAGE_SIZE[1], config.MODEL.IMAGE_SIZE[0])
)
logger.info(get_model_summary(model, dump_input))
if config.TEST.MODEL_FILE:
logger.info('=> loading model from {}'.format(config.TEST.MODEL_FILE))
model.load_state_dict(torch.load(config.TEST.MODEL_FILE))
else:
model_state_file = os.path.join(final_output_dir,
'final_state.pth.tar')
logger.info('=> loading model from {}'.format(model_state_file))
model.load_state_dict(torch.load(model_state_file))
gpus = list(config.GPUS)
model = torch.nn.DataParallel(model, device_ids=gpus).cuda()
# define loss function (criterion) and optimizer
criterion = torch.nn.CrossEntropyLoss().cuda()
# Data loading code
valdir = os.path.join(config.DATASET.ROOT,
config.DATASET.TEST_SET)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
valid_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(int(config.MODEL.IMAGE_SIZE[0] / 0.875)),
transforms.CenterCrop(config.MODEL.IMAGE_SIZE[0]),
transforms.ToTensor(),
normalize,
])),
batch_size=config.TEST.BATCH_SIZE_PER_GPU*len(gpus),
shuffle=False,
num_workers=config.WORKERS,
pin_memory=True
)
# evaluate on validation set
validate(config, valid_loader, model, criterion, final_output_dir,
tb_log_dir, None)
if __name__ == '__main__':
main()