-
Notifications
You must be signed in to change notification settings - Fork 205
/
Copy pathstaircase.py
107 lines (84 loc) · 4.14 KB
/
staircase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# MIT License
#
# Copyright (C) IBM Corporation 2019
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
The staircase mechanism in differential privacy.
"""
import secrets
from numbers import Real
import numpy as np
from diffprivlib.mechanisms.laplace import Laplace
from diffprivlib.utils import copy_docstring
class Staircase(Laplace):
r"""
The staircase mechanism in differential privacy.
The staircase mechanism is an optimisation of the classical Laplace Mechanism (:class:`.Laplace`), described as a
"geometric mixture of uniform random variables".
Paper link: https://arxiv.org/pdf/1212.1186.pdf
Parameters
----------
epsilon : float
Privacy parameter :math:`\epsilon` for the mechanism. Must be in (0, ∞].
sensitivity : float
The sensitivity of the mechanism. Must be in [0, ∞).
gamma : float, default: 1 / (1 + exp(epsilon/2))
Value of the tuning parameter gamma for the mechanism. Must be in [0, 1].
random_state : int or RandomState, optional
Controls the randomness of the mechanism. To obtain a deterministic behaviour during randomisation,
``random_state`` has to be fixed to an integer.
"""
def __init__(self, *, epsilon, sensitivity, gamma=None, random_state=None):
super().__init__(epsilon=epsilon, delta=0, sensitivity=sensitivity, random_state=random_state)
self.gamma = self._check_gamma(gamma, epsilon=self.epsilon)
if isinstance(self._rng, secrets.SystemRandom):
self._rng = np.random.default_rng()
@classmethod
def _check_gamma(cls, gamma, epsilon=None):
if gamma is None and epsilon is not None:
gamma = 1 / (1 + np.exp(epsilon / 2))
if not isinstance(gamma, Real):
raise TypeError("Gamma must be numeric")
if not 0.0 <= gamma <= 1.0:
raise ValueError("Gamma must be in [0,1]")
return float(gamma)
@copy_docstring(Laplace._check_all)
def _check_all(self, value):
super()._check_all(value)
self._check_gamma(self.gamma)
return True
@classmethod
def _check_epsilon_delta(cls, epsilon, delta):
if not delta == 0:
raise ValueError("Delta must be zero")
return super()._check_epsilon_delta(epsilon, delta)
@copy_docstring(Laplace.bias)
def bias(self, value):
return 0.0
@copy_docstring(Laplace.variance)
def variance(self, value):
raise NotImplementedError
@copy_docstring(Laplace.randomise)
def randomise(self, value):
self._check_all(value)
sign = -1 if self._rng.random() < 0.5 else 1
geometric_rv = self._rng.geometric(1 - np.exp(- self.epsilon)) - 1
unif_rv = self._rng.random()
binary_rv = 0 if self._rng.random() < self.gamma / (self.gamma +
(1 - self.gamma) * np.exp(- self.epsilon)) else 1
return value + sign * ((1 - binary_rv) * ((geometric_rv + self.gamma * unif_rv) * self.sensitivity) +
binary_rv * ((geometric_rv + self.gamma + (1 - self.gamma) * unif_rv) *
self.sensitivity))