-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathgraph_layout.py
161 lines (136 loc) · 6.95 KB
/
graph_layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
from math import sqrt, cos, sin
class BaseLayout:
"""
Base class for layouts.
"""
def __init__(self, graph, win_left_right, win_top_bottom, group_sort=None):
self.num_nodes = len(graph.nodes_set)
self.left = win_left_right[0]
self.right = win_left_right[1]
self.top = win_top_bottom[0]
self.bottom = win_top_bottom[1]
self.group_sort = group_sort
self.graph = graph
# set initial positions
if group_sort is not None:
nodes_order = [node for group in group_sort for node in group]
xpos = np.linspace(self.left, self.right, self.num_nodes)
ypos = np.linspace(self.top, self.bottom, self.num_nodes)
else:
nodes_order = list(graph.nodes_set)
xpos = np.random.uniform(self.left, self.right, self.num_nodes)*0.2
ypos = np.random.uniform(self.top, self.bottom, self.num_nodes)*0.2
# dictionary with nodes as keys and [x,y] position numpy-vector as value
self.pos = dict()
for idx in range(self.num_nodes):
self.pos[nodes_order[idx]] = np.array([xpos[idx], ypos[idx]]) # np.array([xpos[idx], ypos[idx]])
class ForceDirectedLayout(BaseLayout):
def __init__(self, graph, win_left_right, win_top_bottom, group_sort=None, k_const=None, num_iterations=100):
"""
Node positions are calculated using the force-directed algorithm by Fruchterman and Reingold (1991)
:param graph: a graph to draw
:param win_left_right: a tuple (left, right) with border coordinates
:param win_top_bottom: a tuple (top, bottom) with border coordinates
:param group_sort: a topologically sorted list of groups of nodes.
Nodes at the beginning of the list will tend to be higher in the layout.
:param k_const: constant of repulsion and attraction forces.
(default is None indicating to automatically determine the value)
:param num_iterations: number of iterations (default: 100; can be reduced to improve runtime)
"""
super().__init__(graph, win_left_right, win_top_bottom, group_sort)
np.random.seed(123)
self.num_iter = num_iterations
if k_const is None:
k_const = sqrt((self.right-self.left)*(self.bottom-self.top) / self.num_nodes) # area / number of nodes
self.k_const = k_const
self.attraction = lambda dist: dist*dist / self.k_const
self.repulsion = lambda dist: self.k_const*self.k_const / dist
init_layout = CircleLayout(graph, tuple(m for m in win_left_right), tuple(m for m in win_top_bottom), group_sort)
init_pos = init_layout.calc_layout()
def _calc_repulsive_forces(self):
repulse = {node: np.zeros(2, dtype=float) for node in self.graph.nodes_set} # dictionary
for node_i in self.graph.nodes_set:
repulse[node_i] = np.zeros(2, dtype=float)
for node_j in self.graph.nodes_set-{node_i}:
dv = self.pos[node_i] - self.pos[node_j]
dist = np.sqrt(dv[0]*dv[0] + dv[1]*dv[1]) # Euclidean distance
dist = max(dist, 1)
repulse[node_i] += (dv / dist) * self.repulsion(dist)
return repulse
def _calc_attracting_forces(self):
attract = {node: np.zeros(2, dtype=float) for node in self.graph.nodes_set} # dictionary
for node_i in self.graph.nodes_set:
for node_j in self.graph.find_adjacent_nodes(node_i): # loop through neighbors
dv = self.pos[node_i] - self.pos[node_j]
dist = np.sqrt(dv[0] * dv[0] + dv[1] * dv[1]) # Euclidean distance
dist = max(dist, 1)
attract[node_i] -= (dv / dist) * self.attraction(dist)
return attract
def calc_layout(self, num_iterations=None):
"""
Main function for calculating the layout.
:param num_iterations: default is None, indicating to use the class attribute value.
:return: return the final position values (also set the class attribute).
"""
if num_iterations is None:
num_iterations = self.num_iter
first_max_disp = self.k_const
for i in range(num_iterations):
max_disp = first_max_disp / (i+1)
repulsing = self._calc_repulsive_forces()
attracting = self._calc_attracting_forces()
for node in self.graph.nodes_set:
disp = (repulsing[node] + attracting[node])
disp_norm = np.sqrt(disp[0]*disp[0] + disp[1]*disp[1])
self.pos[node] += (disp/disp_norm) * min(disp_norm, max_disp)
self.pos[node][0] = min(self.right, max(self.left, self.pos[node][0]))
self.pos[node][1] = min(self.bottom, max(self.top, self.pos[node][1]))
return self.pos
class CircleLayout(BaseLayout):
def __init__(self, graph, win_left_right, win_top_bottom, group_sort=None):
super().__init__(graph, win_left_right, win_top_bottom, group_sort)
def calc_layout(self):
if self.group_sort is not None:
nodes_order = [node for group in self.group_sort for node in group]
else:
nodes_order = list(self.graph.nodes_set)
xrad = (self.right - self.left)/2
yrad = (self.bottom - self.top)/2
center = ((self.right + self.left)/2, (self.bottom + self.top)/2) # 2-tuple
angle_list = np.linspace(0, 2*np.pi, self.num_nodes+1)
for idx in range(self.num_nodes):
node = nodes_order[idx]
angle = angle_list[idx]
self.pos[node][0] = center[0] + xrad * cos(angle)
self.pos[node][1] = center[1] + yrad * sin(angle)
return self.pos
class ColumnLayout(BaseLayout):
def __init__(self, graph, win_left_right, win_top_bottom, group_sort=None):
super().__init__(graph, win_left_right, win_top_bottom, group_sort)
def calc_layout(self):
if self.group_sort is None:
nodes_order = list(self.graph.nodes_set)
group_sort = [nodes_order]
else: # self.group_sort is not None
group_sort = self.group_sort
# find the size of the largest group of nodes
max_group_len = 0
for group in group_sort:
if len(group) > max_group_len:
max_group_len = len(group)
# calculate positions. First group is left-most
n_groups = len(group_sort)
y_offset = self.bottom
if n_groups > 1:
x_step = (self.right - self.left) / (n_groups-1)
x_offset = self.left
else:
x_step = 0
x_offset = (self.right + self.left) / 2.
y_step = (self.top - self.bottom) / (max_group_len - 1)
for i_group, group in enumerate(group_sort):
for i_node, node in enumerate(group):
self.pos[node][0] = x_step * i_group + x_offset
self.pos[node][1] = y_step * i_node + y_offset
return self.pos